²²⁴Pa α decay 1996Li05

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	E. Browne, J. K. Tuli	NDS 112,1115 (2011)	31-Oct-2010

Parent: ²²⁴Pa: E=0; J^{π}=(5⁻); T_{1/2}=0.79 s 6; Q(α)=7694 5; % α decay=100 Additional information 1.

²²⁰Ac Levels

1996Li05: measured α , γ , ce, $\alpha\gamma$, $(\alpha)(ce)$, $(\alpha)(\gamma)(ce)$.

1990An19: measured α .

1987FuZT: measured α , time correlated $\alpha\alpha$.

The decay scheme is that proposed by 1996Li05, and is based on γ , α , $\alpha\gamma$ and $(\alpha)(ce)$ measurements.

1987FuZT also measured $E\alpha$ and $I\alpha$ and the results, although in general agreement with those from 1996Li05, show some discrepancies. In particular, 1987FuZT reported an α group with $E\alpha$ =7528 keV which feeds a 28-keV level. This α group was not seen in 1996Li05.

Evaluators have significantly modified the decay scheme by introducing a 28-keV level, as suggested in 1987FuZT. Thus, the 28-keV γ ray reported in 1996Li05 is probably a doublet. The individual intensities have been adjusted to produce a more consistent transition-intensity balance in the decay scheme, and to reproduce the experimental alpha-particle intensities. The multipolarity of the 40.7-keV γ ray has been reported as M1 in 1996Li05. Evaluators, however, have assigned an M1+3%E2 multipolarity to the γ ray for consistency in the decay-scheme transition intensity balance, since its conversion coefficient is very sensitive to an E2 admixture. Using this interpretation, the sum of the γ -ray transition intensities to the g.s. and 13-keV is 116 (13)%.

¹⁹⁹⁰An19 observed two α groups with E α =7460 (25%) and 7555 (75%) which they were interpreted to belong to a parent of ²²⁰Ac. These results are in disagreement with those reported in 1996Li05.

E(level) [†]	$J^{\pi \ddagger}$	Comments
0.0	(3 ⁻)	
13.79 <i>13</i>	(2^{-})	
28?		E(level): level suggested by α group reported in 1987FuZT.
40.69 10	(4 ⁻)	
68.71 <i>14</i>	(5^{-})	
71.56 20	(1^{-})	
108.51 18	(3-)	
113.30 20	(1^{-})	
145.6? <i>3</i>		$I\alpha$ =2.6% 9, from γ -ray transition intensity balance.
150.18 14	(4 ⁻)	
153.00 10	(2^{-})	
184.21 16	(3 ⁻)	
233.81 17	(5^{+})	
263.22 15	(4^{+})	
312.0 8		
335.18 20		
356.1 <i>3</i>		
411.9 7		

[†] From least squares fit to γ -ray energies.

[‡] Proposed by 1996Li05, based on γ -ray multipolarities, α hindrance factors, and shell model expectations.

$^{224}\mathbf{Pa}~\alpha$ decay 1996Li05 (continued)

α radiations

$E\alpha^{\dagger}$	E(level)	$I\alpha^{\dagger @}$	HF^{\ddagger}	Comments
7151	411.9	< 0.05	>340	I α =0.04%, from γ -ray transition intensity balance.
7205	356.1	0.2	$1.8 \times 10^2 8$	$E\alpha = 7191$, $I\alpha = 0.7\%$ 2 reported in 1987FuZT.
				I α =0.43% 7, from γ -ray transition intensity balance.
7226	335.18	0.1	3.2×10^2 18	$E\alpha = 7221$, $I\alpha = 1.3\%$ 4 from 1987FuZT.
				I α =0.39% 5, from γ -ray transition intensity balance.
7249	312.0	0.1	$3.9 \times 10^2 22$	I α =0.03%, from γ -ray transition intensity balance.
7297	263.22	2.0	29 16	$E\alpha = 7.292$, $I\alpha = 3.6\%$ 5 reported in 1987FuZT.
				$I\alpha = 2.7\%$ 2, from γ -ray transition intensity balance.
7326	233.81	1.5	49 27	Two α groups with E α =7337, I α =1.4% 3 and E α =7316, I α =1.9% 3 reported in 1987FuZT.
				$I\alpha = 1.0\%$ 2, from γ -ray transition intensity balance.
7375	184.21	2.5	43 24	I α =3.3% 3, from γ -ray transition intensity balance.
7405	153.00	12 [#]	12 6	I α =11.2% 8, from γ -ray transition intensity balance.
7408	150.18	4.0 [#]	35 20	I α =3.5% 5, from γ -ray transition intensity balance.
7444	113.30	2.5	75 40	$I\alpha = 1.1\%$ 2, from γ -ray transition intensity balance.
7449	108.51	4.0	49 27	$I\alpha$ =3.9% 12, from γ -ray transition intensity balance.
7484	71.56	< 0.7	>370	I α <3.4%, from γ -ray transition intensity balance.
7488	68.71	70	3.8 21	I α : 66 3 from 1987FuZT.
				$I\alpha = 71\%$ 8, from γ -ray transition intensity balance.
7515	40.69	< 0.5	>660	I $\alpha \approx 13\%$ from γ -ray transition intensity balance.
7528	28?	2.9 6	125	I α =1.3% 2, from γ -ray transition intensity balance.
				$E\alpha$, I α : From 1987FuZT, α group not seen in 1996Li05.
7542	13.79	< 0.5	>810	
7556	0.0	< 0.5	>900	

[†] From 1996Li05, unless otherwise noted. [‡] $r_0(^{220}Ac)=1.530\ 20.$ [#] 1987FuZT reported one α group with $E\alpha=7408$ and $I\alpha=17\%\ 2.$ [@] Absolute intensity per 100 decays.

 $\gamma(^{220}\text{Ac})$

All γ -ray data are from 1996Li05.

Eγ	I_{γ} ^{‡&}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.#	α^{\dagger}	Comments
(13.8)		13.79	(2 ⁻)	0.0	(3 ⁻)	[M1,E2]	2.1×10 ⁴ 21	$\alpha(M)=1.6\times10^{4} \ 16; \ \alpha(N+)=5.E3 \ 6$ $\alpha(N)=4.E3 \ 5; \ \alpha(O)=9.E2 \ 9; \ \alpha(P)=1.4\times10^{2} \ 14;$ $\alpha(Q)=0.30 \ 9$ Mult.: $\alpha(M1)=304, \ \alpha(E2)=43000.$
28.0 [@] 1	3.0 4	28?		0.0	(3 ⁻)	[E1]	3.34 6	$\alpha(L)=2.505; \alpha(M)=0.63411; \alpha(N+)=0.2024$ $\alpha(N)=0.1633; \alpha(O)=0.03406; \alpha(P)=0.004878;$ $\alpha(Q)=0.0001643$ I _y : Evaluators have interpreted this γ ray as a doublet with I γ (doublet)=8.1 (6) (1996Li05). I γ =3.04 and E1 multipolarity was assumed from decay-scheme balance consistency.
28.0 [@] 1	5.1 5	68.71	(5 ⁻)	40.69	(4 ⁻)	M1	143 <i>3</i>	$\begin{array}{l} \alpha(\text{L}) = 108.4 \ 19; \ \alpha(\text{M}) = 26.1 \ 5; \ \alpha(\text{N}+) = 8.86 \ 16 \\ \alpha(\text{N}) = 6.93 \ 13; \ \alpha(\text{O}) = 1.61 \ 3; \ \alpha(\text{P}) = 0.298 \ 6; \\ \alpha(\text{Q}) = 0.0266 \ 5 \\ I_{\gamma}: \text{ Evaluators have interpreted this } \gamma \text{ ray as a} \\ \text{doublet with } I_{\gamma}(\text{doublet}) = 8.1 \ (6) \ (1996\text{Li05}). \end{array}$

Continued on next page (footnotes at end of table)

					²²⁴ P	²²⁴ Pa $α$ decay 1996Li05 (continued)		i05 (continued)	
γ ⁽²²⁰ Ac) (continued)									
Eγ	Ι _γ ‡ &	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	δ	α^{\dagger}	Comments
39.5 ^a		153.00	(2 ⁻)	113.30	(1 ⁻)	[M1,E2]		5.×10 ² 5	I γ =5.1 5 was assumed from decay scheme balance consistency. $\alpha(L)$ =3.E2 3; $\alpha(M)$ =9.E1 9; $\alpha(N+)$ =3.E1 3 $\alpha(N)$ =25 23; $\alpha(D)$ =5 5; $\alpha(P)$ =0.0.8;
40.7 1	13.4 8	40.69	(4 ⁻)	0.0	(3-)	M1+E2	0.18	70.3 12	$\alpha(Q)=2.52, \alpha(Q)=3.5, \alpha(P)=0.9.8, \alpha(Q)=0.007.3$ Additional information 3. $\alpha(L)=52.7.9; \alpha(M)=13.21.22; \alpha(N+)=4.45.8$ $\alpha(N)=3.50.6; \alpha(Q)=0.795.14; \alpha(P)=0.1388.23; \alpha(Q)=0.00860.14$ Mult.: Reported as M1 in 1996Li05.
57.8 2	2.6 9	71.56	(1 ⁻)	13.79	(2 ⁻)	[M1]		17.0 3	Evaluators adopted M1+E2 for transition-intensity balance purposes. $\alpha(L)=12.83\ 23;\ \alpha(M)=3.08\ 6;$ $\alpha(N+)=1.046\ 19$ $\alpha(N)=0.817\ 15;\ \alpha(O)=0.100\ 4;$
67.8 2	3.8 10	108.51	(3 ⁻)	40.69	(4 ⁻)	M1		10.63 <i>18</i>	$\begin{array}{l} \alpha(N)=0.817 \ 15, \ \alpha(O)=0.190 \ 4, \\ \alpha(P)=0.0352 \ 6; \ \alpha(Q)=0.00313 \ 6 \\ \alpha(L)=8.05 \ 14; \ \alpha(M)=1.93 \ 4; \\ \alpha(N+)=0.655 \ 11 \\ \alpha(N)=0.512 \ 9; \ \alpha(O)=0.1191 \ 20; \end{array}$
74.0 2	2.7 9	145.6?		71.56	(1 ⁻)	[M1]		8.74 13	$\alpha(P)=0.0220 4; \alpha(Q)=0.00196 4$ $\alpha(L)=19 13; \alpha(M)=5 4; \alpha(N+)=1.7 12$ $\alpha(N)=1.3 10; \alpha(O)=0.29 21; \alpha(P)=0.05 3;$ $\alpha(Q)=0.0009 7$
8153	<3.0	153.00	(2-)	71 56	(1-)	M1		6 22 11	Mult.: Assumed by evaluators from γ -ray transition intensity balance. Additional information 2. $\alpha(L) = 4.71.9$: $\alpha(M) = 1.129.20$:
01.5 5	<u>_</u> 9.0	155.00	(2)	71.50	(1)	IVII		0.22 11	$\alpha(N)=0.3837$ $\alpha(N)=0.3006; \alpha(O)=0.069713;$
109.5 <i>1</i>	3.0 3	150.18	(4 ⁻)	40.69	(4 ⁻)	M1		13.07	$\alpha(P)=0.01288 \ 23; \ \alpha(Q)=0.001145 \ 21$ $\alpha(K)=10.43 \ 15; \ \alpha(L)=2.00 \ 3;$ $\alpha(M)=0.480 \ 7; \ \alpha(N+)=0.1628 \ 24$ $\alpha(N)=0.1272 \ 19; \ \alpha(O)=0.0296 \ 5;$
113.1 2	5.1 5	263.22	(4+)	150.18	(4-)	E1		0.360	α (P)=0.00547 8; α (Q)=0.000486 7 α (K)=0.278 4; α (L)=0.0623 10; α (M)=0.01506 23; α (N+)=0.00498 8 α (N)=0.00394 6; α (O)=0.000880 13;
113.3 2	1.6 <i>3</i>	113.30	(1 ⁻)	0.0	(3 ⁻)	(E2)		6.07 10	$\alpha(P)=0.0001488 \ 22; \ \alpha(Q)=8.47\times10^{-6}$ 13 $\alpha(K)=0.266 \ 4; \ \alpha(L)=4.25 \ 7; \ \alpha(M)=1.163$ 19; $\alpha(N+)=0.388 \ 7$ $\alpha(N)=0.309 \ 5; \ \alpha(Q)=0.0675 \ 11;$
139.2 <i>1</i>	4.8 4	153.00	(2 ⁻)	13.79	(2 ⁻)	M1		6.65	$\alpha(P)=0.01059 \ I8; \ \alpha(Q)=5.02\times10^{-5} \ 8 \\ \alpha(K)=5.32 \ 8; \ \alpha(L)=1.003 \ I5; \\ \alpha(M)=0.241 \ 4; \ \alpha(N+)=0.0817 \ I2 \\ \alpha(N)=0.0638 \ 9; \ \alpha(O)=0.01484 \ 2I; $
151.0 2	1.7 5	335.18		184.21	(3-)				α (P)=0.00275 <i>4</i> ; α (Q)=0.000243 <i>4</i> Additional
153.0 <i>1</i>	10.7 7	153.00	(2 ⁻)	0.0	(3-)	M1		5.08	information 5. $\alpha(K)=4.07 \ 6; \ \alpha(L)=0.766 \ 11;$ $\alpha(M)=0.184 \ 3; \ \alpha(N+)=0.0623 \ 9$

Continued on next page (footnotes at end of table)

$^{224}\mathbf{Pa}~\alpha$ decay 1996Li05 (continued)

γ ⁽²²⁰Ac) (continued)

E_{γ}	Ι _γ ‡ &	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	α^{\dagger}	Comments
154.7 2	2.8 6	263.22	(4+)	108.51	(3-)	[E1]	0.1705	$ \begin{array}{l} \alpha(\mathrm{N})=0.0487 \ 7; \ \alpha(\mathrm{O})=0.01133 \ 16; \ \alpha(\mathrm{P})=0.00209 \ 3; \\ \alpha(\mathrm{Q})=0.000186 \ 3 \\ \alpha(\mathrm{K})=0.1340 \ 20; \ \alpha(\mathrm{L})=0.0276 \ 4; \ \alpha(\mathrm{M})=0.00665 \ 10; \\ \alpha(\mathrm{N}+)=0.00221 \ 4 \\ \alpha(\mathrm{N})=0.00221 \ 4 \\ \alpha($
165.1 <i>1</i>	8.4 15	233.81	(5+)	68.71	(5 ⁻)	E1	0.1458	$\alpha(N)=0.001/4 \ 3; \ \alpha(O)=0.000393 \ 6; \ \alpha(P)=6.7/\times10^{-5} \ 10; \ \alpha(Q)=4.21\times10^{-6} \ 6 \ \alpha(K)=0.1150 \ 17; \ \alpha(L)=0.0234 \ 4; \ \alpha(M)=0.00563 \ 8; \ \alpha(N+)=0.00187 \ 3 \ \alpha(N)=0.001476 \ 21; \ \alpha(Q)=0.000222 \ 5;$
170.5 3	1.9 3	184.21	(3 ⁻)	13.79	(2 ⁻)	M1	3.74	$\begin{array}{l} \alpha(\mathrm{N})=0.001476\ 21;\ \alpha(\mathrm{O})=0.000535\ 5;\\ \alpha(\mathrm{P})=5.76\times10^{-5}\ 9;\ \alpha(\mathrm{Q})=3.64\times10^{-6}\ 6\\ \alpha(\mathrm{K})=3.00\ 5;\ \alpha(\mathrm{L})=0.563\ 9;\ \alpha(\mathrm{M})=0.1349\ 20;\\ \alpha(\mathrm{N}+)=0.0458\ 7 \end{array}$
182.0 <i>4</i> 184.2 2	≈1.0 6.3 5	335.18 184.21	(3 ⁻)	153.00 0.0	(2 ⁻) (3 ⁻)	M1	3.01	$\begin{array}{l} \alpha(N)=0.0358 \ 6; \ \alpha(O)=0.00832 \ 13; \ \alpha(P)=0.001539 \ 23; \\ \alpha(Q)=0.0001364 \ 21 \\ \text{Additional information } 6. \\ \alpha(K)=2.41 \ 4; \ \alpha(L)=0.452 \ 7; \ \alpha(M)=0.1083 \ 16; \\ \end{array}$
194.5 <i>1</i>	15.7 10	263.22	(4+)	68.71	(5 ⁻)	E1	0.0986	α (N+)=0.0368 6 α (N)=0.0287 5; α (O)=0.00668 10; α (P)=0.001236 18; α (Q)=0.0001095 16 α (K)=0.0782 11; α (L)=0.01544 22; α (M)=0.00371 6;
247.6.3	185	356 1		108 51	(3-)			$\alpha(N+)=0.001235 \ 18$ $\alpha(N)=0.000974 \ 14; \ \alpha(O)=0.000220 \ 3;$ $\alpha(P)=3.84\times10^{-5} \ 6; \ \alpha(Q)=2.53\times10^{-6} \ 4$ Additional information 9
287.4.3	215	356.1		68 71	(5^{-})			Additional information 10
294 7 5	≈0.8	335.18		40.69	(3^{-})			Additional information 7
298.2.7	≈0.3	312.0		13.79	(2^{-})			Additional information 4.
315.8 7	≈0.4	356.1		40.69	(4^{-})			Additional information 11.
335.0 7	≈0.4	335.18		0.0	(3^{-})			Additional information 8.
398.0 10	≈0.2	411.9		13.79	(2^{-})			Additional information 12.
412.0 10	≈0.2	411.9		0.0	(3-)			Additional information 13.

[†] Additional information 14.
[‡] Iγ per 1000α.
[#] Based on α(K)exp and α(L)exp and K/L ratios, values not given.
[@] Possible doublet.
[&] For absolute intensity per 100 decays, multiply by 0.10.
^a Placement of transition in the level scheme is uncertain.

²²⁴Pa α decay 1996Li05

²²⁰₈₉Ac₁₃₁

5