²¹Ne(n,γ): res 2014He25

History				
Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	M. Shamsuzzoha Basunia	NDS 127, 69(2015)	1-Apr-2015	

95.4% enriched ²¹Ne gas target in stainless steel cylinder at 150 atmospheric pressure. Neutrons were produced from ⁷Li(p,n)⁷Be reaction with a pulsed proton beam of 1.0 ns width and a variable repetition rate of 1 MHz and 250 MHz for the capture and transmission runs. E=5 to 800 keV. Neutrons were detected using two C_6D_6 liquid scintillation detectors, neutron energy resolution was 0.2 and 1.5 keV at 20 and 200 keV, respectively. Neutron capture events were detected using the C_6D_6 detectors in combination with the pulse height weighting technique. The resonances in the capture cross sections were identified and analyzed using the multilevel R-matrix code SAMMY.

²²Ne Levels

E(level) [†]	J π ‡	L‡	Comments
10416.4 3	4	2	Resonance energy = $52.1 \text{ keV } 3.$
10462.5 5	4	2	Resonance energy = $98.2 \text{ keV} 5$.
10501.6 <i>3</i>	4	2	Resonance energy = 137.3 keV 3, Γ_{γ} =1.56 eV 21.
10544.9 <i>4</i>	2	0	Resonance energy = 180.6 keV 4, $\Gamma_{\gamma} < 0.24$ eV.

[†] Deduced by evaluator using Sn(²²Ne)=10364.26 4 (2012Wa38) and reported resonance energy in 2014He25.

[‡] From capture cross section fittings using the multilevel R-matrix code SAMMY.