Adopted Levels, Gammas

]	History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh et al. ,	NDS 175, 1 (2021)	19-May-2021

 $Q(\beta^{-})=-2180\ 50;\ S(n)=5323\ 12;\ S(p)=4955\ 8;\ Q(\alpha)=8138\ 3$ 2021Wa16 $S(2n)=12638\ 10,\ S(2p)=8843\ 8\ (2021Wa16).$

Additional information 1.

Theoretical calculations: 34 primary references in the NSR database (www.nndc.bnl.gov/nsr), 12 related to structure calculations, and 22 to radioactivity.

1952Me13: ²¹⁹Ra identified in α decay chain: ²²⁷U \rightarrow ²²³Th \rightarrow ²¹⁹Rn at the 184-inch Berkeley cyclotron, where ²²⁷U was produced in bombardment of thorium nitrate with helium beam. Short half-life was deduced for the decay of ²¹⁹Rn from α measurements. Later measurements at Berkeley by 1970Va13 measured the half-life more precisely.

²¹⁹Ra Levels

The high-spin level scheme was first proposed by 1987Co36 with the discovery of a ground-state band up to 51/2, later modified and extended by 1992Wi02, 1992Li09, 2000Ri12 and 2017He15. See also 1993Sh43 and 2001Sh14 for analysis of spectroscopic data from in-beam γ -ray and α -decay experiments. The ground state band and two side bands have been proposed, with all the three bands containing states of both parities connected by E1 γ transitions. The ground-state band has been interpreted in terms of weak coupling of a g_{9/2} neutron to a soft quadrupole core of ²¹⁸Ra. It has K=1/2 and an expected large decoupling constant, which gives rise to J^{π} =7/2⁺ ground state. The interpretation of the level scheme with three alternating parity bands having different K values is consistent with average B(E1)/B(E2) branching ratios deduced by 1992Wi02 and 1987Co36.

Cross Reference (XREF) Flags

A 223 Th α decay (0.60 s)

B 208 Pb(14 C,3n γ) E=67 MeV

C 208 Pb(14 C,3n γ) E=65 MeV

D 208 Pb(14 C,3n γ) E=68 MeV

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF	Comments
0.0	(7/2+)	9 ms 2	ABCD	%α=100 $T_{1/2}$: from weighted average of 10 ms 3 for 7980 10 α and 8 ms 2 for 7660 20 α (2018Sa45). Others: 10 ms 3 (1970Va13, probably for composite α lines from the decay of the g.s. and 16.6-keV isomer); short half-life (1952Me13). J ^π : analogy with (7/2 ⁺) g.s. in isotonic ²²¹ Th. 2000Ri12 provide detailed discussion for assignment of 7/2 in preference to 11/2, based on their conversion electron measurements and implied multipolarities of transitions in (¹⁴ C,3ny) study, results of α(316γ)(θ) experiment in ²¹⁹ Ra to ²¹⁵ Rn decay (1989Ha26), and consideration of four different scenarios for the structure of the g.s. of ²¹⁹ Ra is statically octupole deformed, consistent with spectrum of low-lying levels predicted by 1993Sh43 (also 2001Sh14), pointing out that in the ground state the odd neutron populated a K=1/2 state having a very large decoupling parameter, resulting in a J^{π} =7/2 ⁺ ground state, and 11/2 ⁺ first excited state at 16 keV. Other: 1989Ha26 measured 7/2 or 11/2, rejecting 9/2 for the 316 level in ²¹⁵ Rn (α)(316γ)(θ) in ²¹⁹ Ra α decay, and assigning favored α decay (HF=4.7 <i>15</i>) of ²¹⁹ Ra g.s. α decay to the 316 level in ²¹⁵ Rn, (7/2,11/2) was assigned for ²¹⁹ Ra g.s., with further preference for 7/2 ⁺ for ²¹⁹ Ra g.s. from systematics arguments. Note, however, that the 316 level in ²¹⁵ Rn has since been assigned (11/2) ⁺ in ²¹⁵ Rn Adopted Levels in the ENSDF database (Sept 2013 update), which negates the argument made by 1989Ha26 about favored α decay. In addition, from data in 2018Sa45 for ²¹⁹ Ra decay, HF=7 3 (deduced by evaluators) for decay to the 316 level in ²¹⁵ Rn may not be a favored decay.

Continued on next page (footnotes at end of table)

²¹⁹Ra Levels (continued)

E(level) [†]	$\mathrm{J}^{\pi \ddagger}$	T _{1/2}	XREF	Comments
16.6 [#] 2	(11/2 ⁺)	10 ms <i>3</i>	ABCD	$\%\alpha \approx 100 \ (2018Sa45); \ \% IT = ?$ T _{1/2} : estimated half-life from Monte Carlo analysis of α decay data from ²¹⁹ Ra decay (2018Sa45).
				J^{π} : from prediction of theoretical calculations in 2001Sh14, based on reflection-asymmetric strong coupling model, as shown in authors' Fig. 5., and comparison of experimental low-lying (11/2 ⁺) levels in isotonic ²¹⁷ Rn
				(first excited state) and ²¹⁵ Po (second excited state), and in isotope ²¹⁷ Ra (second excited state). Also, almost 100% α decay from this isomer to 316, $(11/2)^+$ state in ²¹⁵ Rn, proposed in 2018Sa45, with HF=3.5 <i>11</i> (deduced by evaluators), which may be considered as a favored decay, supporting $(11/2^+)$ for the 16.6 level
52.1 <i>3</i>	$(3/2^+)$		A	J^{π} : 88 γ from (5/2 ⁺); systematics (2001Sh14).
113.7 <mark>&</mark> 1	$(9/2^+)$		ABCD	J^{π} : 97 γ M1 to (11/2 ⁺); band member.
140.0 <i>1</i>	(5/2+)		Α	J^{π} : favored α decay (HF=2.7) from ²²³ Th g.s. with J^{π} =(5/2 ⁺), where J^{π} can be assigned on the basis of analogy with 5/2 ⁺ g.s. of isotonic ²²¹ Ra, and prediction from theoretical calculations by 1987Sh24.
152.0 <i>1</i>	$(7/2^+)$		Α	J^{π} : 152 γ M1+E2 to (7/2 ⁺); 38 γ (M1+E2) to (9/2 ⁺).
251.1 [#] 2	$(15/2^+)$		BCD	J^{π} : E2 γ to $(11/2^+)$.
271.6? 8 320.6 4	(3/2 ⁺ ,5/2,7/2 ⁺)		A A	J^{π} : (5/2 ⁺ to 11/2 ⁺) from possible 158 γ to (9/2) ⁺ and 119 γ to (7/2) ⁺ . J^{π} : 320 γ to (7/2 ⁺); 268 γ to (3/2 ⁺). 2001Sh14 suggested (5/2 ⁻) from systematics.
328.3 5	$(1/2^+ \text{ to } 7/2^+)$		A	J^{π} : 276 γ to (3/2 ⁺); 188 γ to (5/2 ⁺).
404.7 2	$(3/2^+, 5/2, 7/2^+)$		A	J^{π} : 353 γ to (3/2 ⁺); 253 γ to (7/2 ⁺). 2001Sh14 suggested (5/2 ⁻) from systematics.
421.7 <i>12</i> 445.0 <i>3</i>	(5/2+,7/2,9/2+)		A A	J^{π} : 421 γ to (7/2 ⁺). J^{π} : 331 γ to (9/2 ⁺); 305 γ to (5/2 ⁺). 2001Sh14 suggested (7/2 ⁻) from
470.7 5	(5/2 ⁺ to 11/2 ⁺)		A	J^{π} : 357 γ to (9/2 ⁺); 319 γ to (7/2 ⁺). 2001Sh14 suggested (9/2 ⁻) from systematics.
475.2 ^{&} 2	$(13/2^+)$		BCD	J^{π} : 361 γ E2 to (9/2 ⁺); 459 γ M1 to (11/2 ⁺); band member.
512.4 [@] 2	$(17/2^{-})$		BCD	J^{π} : 261 γ E1 to (15/2 ⁺); band member.
515.4 10			Α	J^{π} : (5/2 ⁺ to 13/2 ⁺) from 401 γ to (9/2 ⁺).
546.1 [#] 2	$(19/2^+)$		BCD	
556.0 ^b 3	$(13/2^+)$		CD	
604.1 ^{<i>a</i>} 2	$(15/2^{-})$		BCD	
751.3 ^{^w} 2	$(21/2^{-})$		BCD	
779.8° 4	$(15/2^{-})$		CD	
853.5° 3	$(17/2^+)$		BCD	
876.5° 3	$(17/2^+)$		BCD	
$893.2^{\#}3$	$(23/2^+)$ $(10/2^-)$		BCD	
1052.3°	(19/2)		BCD	
1035.5 5 1131.2 ^c 4	$(23/2^{-})$		CD	
$1245.7^{\&}3$	$(1)/2^{+})$		BCD	
$12573^{b}3$	$(21/2^+)$		CD	
$1288.4^{\#}$ 3	$(27/2^+)$		BCD	
1324.9 ^{<i>a</i>} 3	(23/2 ⁻)		BCD	
1411.4 [@] 3	(29/2-)		BCD	
1426.4? 5			С	
1504.4 ^C 4	$(23/2^{-})$		CD	
1638.1 ^{x} 4	$(25/2^+)$		BCD	

					²¹⁹ Ra Le	vels (continued))	
E(level) [†]	J ^π ‡	XREF	E(level) [†]	Jπ‡	XREF	E(level) [†]	Jπ‡	XREF
1671.6 <mark>b</mark> 5	$(25/2^+)$	CD	2460.1 ^{&} 4	$(33/2^+)$	BCD	3451.2 ^{<i>a</i>} 7	$(43/2^{-})$	D
1701.6 [#] 3	$(31/2)^+$	BCD	2567.9 ^a 4	$(35/2^{-})$	CD	3522.5 [#] 5	$(47/2^+)$	ΒD
1738.2 ^a 3	$(27/2^{-})$	BCD	2580.4 [#] 4	$(39/2^+)$	BCD	3775.6 ^{&} 9	$(45/2^+)$	D
1833.2 [@] 3	$(33/2^{-})$	BCD	2767.8 [@] 4	$(41/2^{-})$	BCD	3793.2 [@] 5	$(49/2^{-})$	ΒD
1933.1? ^C 9	$(27/2^{-})$	D	2888.0 ^{&} 6	$(37/2^+)$	D	3913.8 ^a 14	$(47/2^{-})$	D
2038.6 ^{&} 4	$(29/2^+)$	BCD	3003.0 ^{<i>a</i>} 5	$(39/2^{-})$	CD	4024.7 [#] 7	$(51/2^+)$	ΒD
2130.2 [#] 3	$(35/2^+)$	BCD	3045.7 [#] 4	$(43/2^+)$	BCD	4324.7? [@] 9	$(53/2^{-})$	D
2152.9 ^{<i>a</i>} 4	$(31/2^{-})$	BCD	3272.7 [@] 4	$(45/2^{-})$	ΒD			
2289.7 [@] 4	$(37/2^{-})$	BCD	3320.4 <mark>&</mark> 7	$(41/2^+)$	D			

 † Deduced by evaluators from a least-squares fit to $E\gamma$ data.

[‡] Spin and parity assignments to levels from ${}^{208}\text{Pb}({}^{14}\text{C},3n\gamma)$ are based on band structure, γ -ray multipolarities inferred from conversion electron data (2000Ri12,1987Co36), DCO ratios (1992Wi02,2017He15), and $\gamma(\theta)$ data in 1987Co36.

[#] Band(A): Band based on (11/2⁺). Alternating parity band, indicating reflection asymmetric structure.

[@] Band(a): Band based on (17/2⁻). Alternating parity band, indicating reflection asymmetric structure.

& Band(B): Band based on $(9/2^+)$. Alternating parity band, indicating reflection asymmetric structure.

^{*a*} Band(b): Band based on $(15/2^{-})$. Alternating parity band, indicating reflection asymmetric structure.

^b Band(C): Band based on (13/2⁺). Alternating parity band, indicating reflection asymmetric structure.

^c Band(c): Band based on (15/2⁻). Alternating parity band, indicating reflection asymmetric structure.

					Adopted Leve	els, Gammas ((continued)		
						γ (²¹⁹ Ra)			
E _i (level)	J_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	${f J}_f^\pi$	Mult. [†]	δ	α #	Comments
52.1	$(3/2^+)$	52.0 [‡] 3	100 [‡]	0.0 (7	7/2+)	[E2]		216 7	
113.7	(9/2+)	97.14 [‡] <i>17</i>	56 [‡] 7	16.6 (1	11/2+)	M1 [‡]		3.39	
		113.74 [‡] <i>11</i>	100 [‡] <i>13</i>	0.0 (7	7/2+)	M1 [‡]		10.83	
140.0	$(5/2^+)$	88.0 [‡] 5	9 [‡] 7	52.1 (3	3/2+)	[M1+E2]		11 7	
		140.01 [‡] 9	100 [‡] <i>11</i>	0.0 (7	7/2+)	M1 [‡]		5.99	
152.0	$(7/2^+)$	38.2 [‡] 3	1.9 [‡] 9	113.7 (9	9/2+)	(M1+E2) [‡]	0.31 [‡] 15	132 62	
		151.99 [‡] <i>10</i>	100 [‡] <i>11</i>	0.0 (7	7/2+)	M1+E2 [‡]	0.95 [‡] +90-50	3.3 10	
251.1	$(15/2^+)$	234.5 1	100	16.6 (1	$11/2^+$)	E2		0.336	
271.6?		119.6 ^{‡@}		152.0 (7	7/2+)				
		157.8 ^{‡@}		113.7 (9	9/2+)				
320.6	$(3/2^+, 5/2, 7/2^+)$	168.8 [‡] 5	100 [‡] 50	152.0 (7	7/2+)				
		268.0 [‡] 10	≈167 [‡]	52.1 (3	3/2+)				
		320.6 [‡] 8	≈33 [‡]	0.0 (7	7/2+)				
328.3	$(1/2^+ \text{ to } 7/2^+)$	188.4 [‡] 7	≈50 [‡]	140.0 (3	5/2+)				
		276.1 [‡] 6	100 [‡] 50	52.1 (3	3/2+)				
404.7	$(3/2^+, 5/2, 7/2^+)$	252.8 [‡] 2	43 [‡] <i>13</i>	152.0 (7	7/2+)				
		264.7 [‡] 2	100 [‡] <i>30</i>	140.0 (3	5/2+)				
		353.0 ^{‡@}	≈2.9 [‡]	52.1 (3	3/2+)				
421.7		421.7 [‡] <i>12</i>	100	0.0 (7	7/2+)				
445.0	$(5/2^+, 7/2, 9/2^+)$	124.4 ^{‡@}		320.6 (3	3/2+,5/2,7/2+)				
		293.0 [‡] 5	$100^{\ddagger} 25$	152.0 (7	7/2+)				
		305.0 [‡] 5	100 [‡] 50	140.0 (3	5/2+)				
		331.3 [‡] 5	100 [‡] 50	113.7 (9	9/2+)				
470.7	$(5/2^+$ to $11/2^+)$	318.8 [‡] 7	60 [‡] <i>30</i>	152.0 (7	7/2+)				
		356.9 [‡] 7	100 [‡] 60	113.7 (9	$9/2^+)$				
475.2	$(13/2^+)$	361.5 2	100 5	113.7 (9	$9/2^+)$	E2		0.0887	
512.4	$(17/2^{-})$	458.6 2 261 2 1	68 4 100	16.6 (1	$11/2^+)$ $15/2^+)$	MI F1		0.224	
515.4	(17/2)	401.7^{\ddagger} 10	100	113.7 (0	(2^+)	LI		0.040	
546.1	$(19/2^+)$	295.0 1	100	251.1 (1	$15/2^+$	(E2)		0.160	
556.0	$(13/2^+)$	539.1 4	100	16.6	$11/2^+$)	D			
604.1	(15/2 ⁻)	(48.1)		556.0 (1	13/2+)				E_{γ} : unobserved transition with E_{γ} =48.4 in E=65 MeV (1992Wi02) only. Here
		128.9 2	100 6	475.2 (1	$13/2^{+}$)	E1		0.260	Ey is nom lever-energy unreferice.
		353.0 3	30 3	251.1 (1	15/2+)				I_{γ} : from E=68 MeV (2017He15). Other: 11 2 (E=65 MeV, 1992Wi02).

4

From ENSDF

L

$\gamma(^{219}$ Ra) (continued)

E _i (level)	\mathbf{J}_i^π	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [†]	$\alpha^{\#}$	Comments
751.3	$(21/2^{-})$	205.2.2	100 4	546.1	$(19/2^+)$	E1	0.0849	
10110	(21/2)	238.5 2	4.3 11	512.4	$(17/2^{-})$ $(17/2^{-})$	(E2)	0.316	I _γ : unweighted average of 6.36 23 (E=68 MeV, 2017He15); 3.88 15 (E=65 MeV, 1992Wi02); 2.80 15 (E=67 MeV, 1987Co36).
779.8	$(15/2^{-})$	223.8 <i>3</i>	100	556.0	$(13/2^+)$			
853.5	$(17/2^+)$	249.4 2	100.5	604.1	$(15/2^{-})$	D		
		378.3 3	35 4	475.2	$(13/2^+)$			
876.5	$(17/2^+)$	96.7.3	16.4	779.8	$(15/2^{-})$	[E1]	0.1207	L _v : from E=68 MeV (2017He15). Other: 56 4 in E=65 MeV (1992Wi02).
07010	(1),=)	320.5.3	16 4	556.0	$(13/2^+)$	(E2)	0.125	$L_{\rm c}$: from E=68 MeV (2017He15). Other: 85 41 in E=65 MeV (1992Wi02).
		625 7 3	100 11	251.1	$(15/2^+)$	D	01120	
893.2	$(23/2^+)$	141 7 2	100 5	751.3	$(21/2^{-})$	E1	0.207	
075.2	(23/2)	347 3 2	75.8	546.1	$(21/2^{+})$ $(10/2^{+})$	E1 E2	0.0001	I : unweighted average of 67.2 (E-68 MeV 2017He15) and 83.5 (E-65 MeV
		547.5 2	15 0	540.1	(1)/2)	12	0.0771	1992Wi02). Other: 123 6 (E=67 MeV, 1987Co36). Unweighted average of all the three results is 91 17.
937.6	(19/2 ⁻)	(61.1)		876.5	$(17/2^+)$			E_{γ} : unobserved transition with E_{γ} =61.4 in E=65 MeV (1992Wi02) only. Here E_{γ} is from level-energy difference.
		84.3.3	29.8	853.5	$(17/2^+)$	(E1)	0.174	$I_{\rm ac}$ from E=65 MeV (1992Wi02). Other: 244 17 (E=68 MeV. 2017He15).
		333.6.2	100.5	604.1	$(15/2^{-})$	(E2)	0.111	-,
		391.9.5		546.1	$(19/2^+)$			
		425.4.3	28 4	512.4	$(17/2^{-})$			I_{v} : from E=68 MeV (2017He15). Other: 12 2 (E=65 MeV. 1992Wi02).
1053.3	$(25/2^{-})$	160.1 2	100 3	893.2	$(23/2^+)$	E1	0.1545	
		302.0 2	26 4	751.3	(21/2-)	E2	0.1492	I _γ : unweighted average of 19.7 <i>16</i> (E=68 MeV, 2017He15); 26.1 <i>13</i> (E=65 MeV, 1992Wi02); 31.9 <i>16</i> (E=67 MeV, 1987Co36).
1131.2	$(19/2^{-})$	254.8 <i>3</i>	100 8	876.5	$(17/2^+)$	D		
		351.2 5	44 11	779.8	$(15/2^{-})$			I_{γ} : available from E=68 MeV (2017He15) only.
		619 [@] 1	100 15	512.4	$(17/2^{-})$			$E_{\rm v}$: γ from E=65 MeV only (1992Wi02).
1245.7	$(21/2^+)$	308.4.3	100.17	937.6	$(19/2^{-})$	D		I_{ac} : from E=68 MeV (2017He15).
	(/-)	390.7 10	25 8	853.5	$(17/2^+)$	_		E_{γ} : from E=68 MeV (2017He15). Tentative γ with E_{γ} =392.3 5 in E=65 MeV (1992Wi02). Not reported in E=67 MeV (1987Co36).
1257.3	$(21/2^+)$	126.0 3	97 17	1131.2	(19/2 ⁻)	[E1]	0.275	I_{γ} : unweighted average of 80 <i>10</i> (E=68 MeV, 2017He15) and 114 <i>14</i> (E=65 MeV, 1992Wi02).
		381.0 <i>3</i>	100 10	876.5	$(17/2^+)$			
		711.0 3	84 17	546.1	$(19/2^+)$			I_{γ} : unweighted average of 100 <i>10</i> (E=68 MeV, 2017He15) and 67 7 (E=65 MeV, 1992Wi02).
1288.4	$(27/2^+)$	234.9 2	100.0 25	1053.3	$(25/2^{-})$			
	,	395.0 2	36 6	893.2	$(23/2^+)$	(E2)	0.0697	I_{γ} : unweighted average of 26.8 25 (E=68 MeV, 2017He15); 35.9 <i>16</i> (E=65 MeV, 1992Wi02); 46.9 26 (E=67 MeV, 1987Co36).
1324.9	$(23/2^{-})$	79.4 <i>3</i>	20 2	1245.7	$(21/2^+)$	[E1]	0.204	I_{α} : from E=68 MeV (2017He15). Other: 7.1 24 (E=65 MeV, 1992Wi02).
	(-1)	387.4 2	100 5	937.6	$(19/2^{-})$	(E2)	0.0735	
		573.6 3	45 4	751.3	$(21/2^{-})$	()		I_{γ} : from E=68 MeV (2017He15). Other: 16.5 24 (E=65 MeV. 1992Wi02).
1411.4	(29/2 ⁻)	122.8 2	83 12	1288.4	(27/2+)	(E1)	0.292	I_{γ} : unweighted average of 94 3 (E=68 MeV, 2017He15) and 71 3 (E=65 MeV, 1992Wi02). Other: 46.9 26 (E=67 MeV, 1987Co36).
		358.1 <i>I</i>	100 3	1053.3	$(25/2^{-})$	E2	0.0911	
1426.4?		295.2 [@] 3	100	1131.2	$(19/2^{-})$			

S

γ (²¹⁹Ra) (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$E_f = J_f^{\pi}$	Mult. [†]	α #	Comments
1504.4	(23/2 ⁻)	247.2 <i>3</i> 373.3 <i>10</i>	100 <i>11</i> 22 <i>11</i>	1257.3 (21/2 1131.2 (19/2	+) -)		E_{γ}, I_{γ} : from E=68 MeV (2017He15). Tentative 373.3 5 γ in E=65 MeV
		753 [@] 1		751.3 (21/2	-)		γ from E=65 MeV (1992Wi02) only, with I γ =425 75. Treated as uncertain by evaluators, since not confirmed in 2017He15.
1638.1	(25/2+)	313.1 <i>3</i> 392.4 <i>9</i>	100 <i>10</i> 43 5	1324.9 (23/2 1245.7 (21/2	-) +)		E_{γ}, I_{γ} : from E=68 MeV (2017He15). Tentative 392.6 5 γ in E=65 MeV
1671.6	(25/2+)	167.3 <i>3</i> 414.0 <i>5</i>	100 <i>17</i> 117 <i>34</i>	1504.4 (23/2 1257.3 (21/2	-) (E1) +)	0.138	(1992w102), with no intensity given. I_{γ} : given in E=68 MeV (2017He15) only.
1701.6	(31/2)+	776.8 [@] 10 290.2 2	33 <i>17</i> 100 <i>3</i>	893.2 (23/2 1411.4 (29/2	+) -) E1	0.0379	E_{γ}, I_{γ} : tentative γ from E=68 MeV (2017He15) only.
1738.2	(27/2 ⁻)	413.2 2 100.2 5 413.7 3	14.3 10 59.1 23 100 7	$\begin{array}{r} 1288.4 & (27)/2 \\ 1638.1 & (25)/2 \\ 1324.9 & (23)/2 \end{array}$	⁺) Q ⁺) [E1] ⁻) O	0.110	I_{γ} : available from E=68 MeV (2017He15) only.
1833.2	(33/2 ⁻)	685.0 <i>4</i> 131.6 2	68 5 41 8	1053.3 (25/2 1701.6 (31/2	-)) ⁺ (E1)	0.247	I_{γ} : from E=68 MeV (2017He15). Other: 28.6 <i>36</i> (E=65 MeV, 1992Wi02). I_{γ} : unweighted average of 56 <i>4</i> (E=68 MeV, 2017He15); 36.4 <i>15</i> (E=65 MeV, 2017He15); 36.4
1933.1?	(27/2-)	421.8 <i>1</i> 261.5 7	100 <i>4</i> 100 <i>13</i>	1411.4 (29/2 1671.6 (25/2	-) E2 +)	0.0588	1992 w 102); $30.7 10 (E=07 MeV, 1987C030).$
2038.6	(29/2+)	428.1 [@] 10 300.4 4	13 6 100 4	1504.4 (23/2 1738.2 (27/2	-) -)		
2120.2	(25/24)	400.5 3	21 4	1638.1 (25/2	+)	0.02(0	I_{γ} : weighted average of 19.4 32 (E=68 MeV, 2017He15) and 32 8 (E=65 MeV, 1992Wi02).
2130.2	(35/21)	297.0 3 428.6 2	100 5 23.6 20	1833.2 (33/2 1701.6 (31/2) EI) ⁺ Q	0.0360	I_{γ} : unweighted average of 21.7 <i>11</i> (E=68 MeV, 2017He15) and 25.5 <i>10</i> (E=65 MeV, 1992Wi02) Other: 11.7.5 (E=67 MeV, 1987Co36)
2152.9	(31/2 ⁻)	114.1 <i>3</i> 414.9 <i>2</i>	13.4 <i>15</i> 100 <i>5</i>	2038.6 (29/2 1738.2 (27/2	+) -) Q		I_{γ} : from E=68 MeV (2017He15). Other: 22.4 9 (E=65 MeV, 1992Wi02).
2200 7	(27/2-)	741.4 5	27 3	1411.4 (29/2	-)	0.155	I _γ : weighted average of 28 <i>3</i> (E=68 MeV, 2017He15) and 25.9 <i>35</i> (E=65 MeV, 1992Wi02). Other: 11.7 5 (E=67 MeV, 1987Co36).
2289.7	(37/2)	159.5 3	46 12	2130.2 (35/2	') [E1]	0.155	I_{γ} : unweighted average of 34 6 (E=65 MeV, 1992w102) and 57 8 (E=67 MeV, 1987Co36). Other: 13.4 15 (E=68 MeV, 2017He15). Unweighted average of all three results is 35 13.
2460.1	(33/2+)	456.4 2 307.5 <i>3</i>	100 <i>5</i> 100 <i>10</i>	1833.2 (33/2 2152.9 (31/2	-) E2 -)	0.0482	
2567.0	$(35/2^{-})$	421.6 5	127 10	2038.6 (29/2	+) +)		I_{γ} : from E=68 MeV (2017He15) only. Tentative γ in E=65 MeV (1992Wi02), with no Iγ; γ not reported in 1987Co36.
2307.9	(33/2)	415.1 <i>3</i> 734.4 <i>4</i>	173 9 100 9	2152.9 (31/2) 1833.2 (33/2)	-) -)		I_{γ} : from E=68 MeV (2017He15). Other: 85 39 (E=65 MeV, 1992Wi02). I_{γ} : from E=68 MeV (2017He15). Other: 85 39 (E=65 MeV, 1992Wi02).
2580.4	$(39/2^+)$	290.6 3	100 4	2289.7 (37/2	-) D		

6

$\gamma(^{219}\text{Ra})$ (continued)

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	E _i (level)	J_i^π	${\rm E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	E_f	J_f^{π}	Mult. [†]	α #	Comments
2767.8 $(41/2^-)$ 187.5 3 $38.2 \ 14$ $2580.4 \ (39/2^+)$ $(E1)$ 0.105 $I_{y}: weighted average of 38.0 \ 14 \ (E=68 \ MeV, 2017 \ MeL5) and 42 \ 6 \ (E=65 \ MeV, 1997 \ Co36).288.0(37/2^+)319.9 \ 9100 \ 72267.9 \ (35/2^-)428.1 \ 973 \ 72460.1 \ (33/2^+)3003.0(39/2^-)114.8 \ 1029 \ 52888.0 \ (37/2^+)[E1]0.343 \ 9\gamma \ from \ E=68 \ MeV \ (2017 \ He15) \ only.3045.7(43/2^+)277.7 \ 5100 \ 42767.8 \ (41/2^-)D3272.7(45/2^-)226.9 \ 245 \ 43045.7 \ (43/2^+)D3220.4(41/2^+)317.6 \ 9100 \ 72767.8 \ (41/2^-)D3220.4(41/2^+)317.6 \ 9100 \ 72767.8 \ (41/2^-)Q3251.2(43/2^-)131.0 \ 8100 \ 4320.4 \ (41/2^+)(41/2^+)$	2580.4	$(39/2^+)$	450.2 3	30.7 20	2130.2	$(35/2^+)$	Q		I_{γ} : weighted average of 33.3 22 (E=68 MeV, 2017He15) and 29.6 23 (E=65 MeV 1992Wi02): 29.4 20 (E=67 MeV 1987Co36)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2767.8	(41/2 ⁻)	187.5 <i>3</i>	38.2 14	2580.4	(39/2+)	(E1)	0.105	I_{γ} : weighted average of 38.0 <i>I4</i> (E=68 MeV, 2017He15) and 42 6 (E=65 MeV, 1992Wi02). Other: 59.5 27 (E=67 MeV, 1987Co36). Unweighted average of all the three results is 47 6.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			478.1 <i>3</i>	100 3	2289.7	$(37/2^{-})$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2888.0	$(37/2^+)$	319.9 9	100 7	2567.9	$(35/2^{-})$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			428.1 9	73 7	2460.1	$(33/2^+)$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3003.0	$(39/2^{-})$	114.8 10	29 5	2888.0	$(37/2^+)$	[E1]	0.343 9	γ from E=68 MeV (2017He15) only.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			435.4 <i>3</i>	100 10	2567.9	$(35/2^{-})$			
3045.7 $(43/2^+)$ 277.75 $100 4$ $2767.8 (41/2^-)$ D $465.1 3$ $80 5$ $2580.4 (39/2^+)$ Q 3272.7 $(45/2^-)$ $226.9 2$ $45 4$ $3045.7 (43/2^+)$ D $505.0 2$ $100 7$ $2767.8 (41/2^-)$ Q 3320.4 $(41/2^+)$ $317.6 9$ $100 14$ $3003.0 (39/2^-)$ $432.5 10$ $57 14$ $2888.0 (37/2^+)$ Q 3451.2 $(43/2^-)$ $131.0 8$ $100 4$ $3320.4 (41/2^+)$			711.9 9	67 5	2289.7	$(37/2^{-})$			γ from E=68 MeV (2017He15) only.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3045.7	$(43/2^+)$	277.7 5	100 4	2767.8	$(41/2^{-})$	D		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			465.1 <i>3</i>	80 <i>5</i>	2580.4	(39/2+)	Q		I_{γ} : weighted average of 84 4 (E=68 MeV, 2017He15) and 73 5 (E=67 MeV, 1987Co36). In E=65 MeV (1992Wi02), I γ is available for only the 465 γ , thus no branching ratio can be deduced.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3272.7	$(45/2^{-})$	226.9 2	45 <i>4</i>	3045.7	$(43/2^+)$	D		I_{γ} : from E=68 MeV (2017He15). Other: 100 13 (E=67 MeV, 1987Co36).
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			505.0 2	100 7	2767.8	$(41/2^{-})$	Q		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3320.4	$(41/2^+)$	317.6 9	100 14	3003.0	$(39/2^{-})$			
$3451.2 (43/2^-) 131.0 8 100 4 3320.4 (41/2^+)$			432.5 10	57 14	2888.0	$(37/2^+)$			
	3451.2	$(43/2^{-})$	131.0 8	100 4	3320.4	$(41/2^+)$			
448.6 8 80 4 3003.0 (39/2-)			448.6 8	80 4	3003.0	$(39/2^{-})$			
$682.3 \ 10 \qquad 16 \ 4 \qquad 2767.8 \ (41/2^{-})$			682.3 10	16 4	2767.8	$(41/2^{-})$			
3522.5 $(47/2^+)$ 249.4 5 100 5 3272.7 $(45/2^-)$	3522.5	$(47/2^+)$	249.4 5	100 5	3272.7	$(45/2^{-})$			
476.9 5 95 9 $3045.7 (43/2^+)$ Q I_{γ} : from E=68 MeV (2017He15). Other: 36 9 (E=67 MeV, 1987Co36).			476.9 5	95 9	3045.7	$(43/2^+)$	Q		I_{γ} : from E=68 MeV (2017He15). Other: 36 9 (E=67 MeV, 1987Co36).
$3775.6 (45/2^+) 324.3 \ 10 12 \ 4 3451.2 (43/2^-)$	3775.6	$(45/2^+)$	324.3 10	12 4	3451.2	$(43/2^{-})$,
$455.3 8 100 8 3320.4 (41/2^+)$			455.3 8	100 8	3320.4	$(41/2^+)$			
$3793.2 (49/2^-) 270.7 3 100 10 3522.5 (47/2^+)$	3793.2	$(49/2^{-})$	270.7 3	100 10	3522.5	$(47/2^+)$			
520.6 4 50 10 3272.7 $(45/2^{-})$ Q I _{γ} : from E=68 MeV (2017He15). Other: 100 17 (E=67 MeV, 1987Co36).			520.6 4	50 10	3272.7	$(45/2^{-})$	Q		I_{γ} : from E=68 MeV (2017He15). Other: 100 17 (E=67 MeV, 1987Co36).
$3913.8 (47/2^{-}) 138.2 \ 10 100 \ 13 3775.6 (45/2^{+})$	3913.8	$(47/2^{-})$	138.2 10	100 13	3775.6	$(45/2^+)$			
462.5° 10 75 13 $3451.2 (43/2^{-})$			462.5 [@] 10	75 13	3451.2	$(43/2^{-})$			
4024.7 (51/2 ⁺) 231.7 5 100 4 3793.2 (49/2 ⁻)	4024.7	$(51/2^+)$	231.7 5	100 4	3793.2	$(49/2^{-})$			
501.7 9 48 4 3522.5 $(47/2^+)$ (Q) E_{γ},I_{γ} : from E=68 MeV (2017He15). Other: E_{γ} =503.7 2, I_{γ} =86 7 (E=67 MeV, 1987Co36).		/	501.7 9	48 4	3522.5	(47/2+)	(Q)		E_{γ} , I_{γ} : from E=68 MeV (2017He15). Other: E_{γ} =503.7 2, I_{γ} =86 7 (E=67 MeV, 1987Co36).
$4324.7?$ $(53/2^{-})$ $300.2^{@}$ 9 100 6 4024.7 $(51/2^{+})$	4324.7?	$(53/2^{-})$	300.2 [@] 9	100 6	4024.7	$(51/2^+)$			
531.2° 10 8 4 $3793.2.(49/2^{-1})$		/	$531.2^{@}$ 10	84	3793.2	$(49/2^{-})$			

 \neg

[†] From ²⁰⁸Pb(¹⁴C,3n γ) reaction in different studies, for γ rays from high-spin (J \geq 13/2⁺) levels. Gamma-ray energies are from weighted averages of available data. Relative gamma-ray branching ratios differ significantly between the three studies (2017He15, 1992Wi02, 1987Co36) at different beam energies. In some cases, weighted or unweighted averages are taken, while in others, values are adopted from 2017He15, with apparently, the most statistics. Multipolarity assignments are from ce and $\gamma(\theta)$ data in E=67 MeV (1987Co36), $\gamma\gamma(\theta)$ (DCO) data in E=65 MeV (1992Wi02), and ce and $\gamma\gamma(\theta)$ data in E=68 MeV

From ENSDF

 $^{219}_{88}$ Ra $_{131}$ -7

$\gamma(^{219}\text{Ra})$ (continued)

(2017He15, 2000Ri12). Mult=Q is is most likely E2, as the transition is within a band, and no long-lived levels are expected to give M2. Exceptions are noted.
[‡] From ²²³Th α decay.
[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ-ray energies,

assigned multipolarities, and mixing ratios, unless otherwise specified.

[@] Placement of transition in the level scheme is uncertain.

	Adopted Levels, Gammas	Legend
	Level Scheme Intensities: Relative photon branching from each level	γ Decay (Uncertain)
53/2 [−]) ³ (2 [−])		4324.7
51/2 ⁺) ↓ <i>§ § §</i>		4024.7
17/2 ⁻)	v	3913.8
19/2 [−]) ↓ ↓ ↓ $h_{1}^{0} h_{2}^{0} h_{3}^{0} h_{3}^{0}$		3793.2
17/2+)	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	2522.5
13/2 ⁻)		3451.2
(1/2 ⁺) (5/2 ⁻)		3320.4
13/2 ⁺) 39/2 ⁻) 37/2 ⁺)	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	<u> </u>
1/2-)		2767.8_
9/2 ⁺) 5/2 ⁻)		<u>\$ 2580.4</u> 2567.9
3/2+)	↓↓ ↓	
7/2 ⁻)	→ ↓ ↓ ↓ *	$\begin{array}{c} \tilde{\varphi} & \tilde{\varphi} & \tilde{\varphi} & \tilde{\varphi} & \tilde{\varphi} \\ \hline & & \tilde{\varphi} & \tilde{\varphi} & \tilde{\varphi} & \tilde{\varphi} \\ \hline & & & \tilde{\varphi} & \tilde{\varphi} & \tilde{\varphi} \\ \hline & & & \tilde{\varphi} & \tilde{\varphi} & \tilde{\varphi} \\ \hline & & & \tilde{\varphi} & \tilde{\varphi} & \tilde{\varphi} \\ \hline & & & \tilde{\varphi} & \tilde{\varphi} & \tilde{\varphi} \\ \hline & & & \tilde{\varphi} & \tilde{\varphi} & \tilde{\varphi} \\ \hline & & & \tilde{\varphi} & \tilde{\varphi} & \tilde{\varphi} \\ \hline & & & \tilde{\varphi} & \tilde{\varphi} & \tilde{\varphi} \\ \hline & & & \tilde{\varphi} & \tilde{\varphi} & \tilde{\varphi} \\ \hline & & & \tilde{\varphi} & \tilde{\varphi} & \tilde{\varphi} \\ \hline & & & \tilde{\varphi} & \tilde{\varphi} & \tilde{\varphi} \\ \hline & & & \tilde{\varphi} & \tilde{\varphi} & \tilde{\varphi} \\ \hline & & & \tilde{\varphi} & \tilde{\varphi} & \tilde{\varphi} \\ \hline & & & \tilde{\varphi} & \tilde{\varphi} & \tilde{\varphi} \\ \hline & & & \tilde{\varphi} & \tilde{\varphi} & \tilde{\varphi} \\ \hline & & & \tilde{\varphi} & \tilde{\varphi} & \tilde{\varphi} \\ \hline & & & \tilde{\varphi} & \tilde{\varphi} & \tilde{\varphi} \\ \hline & & & \tilde{\varphi} & \tilde{\varphi} & \tilde{\varphi} \\ \hline & & & \tilde{\varphi} & \tilde{\varphi} & \tilde{\varphi} \\ \hline & & & \tilde{\varphi} & \tilde{\varphi} & \tilde{\varphi} \\ \hline & & & \tilde{\varphi} & \tilde{\varphi} & \tilde{\varphi} \\ \hline & & & \tilde{\varphi} & \tilde{\varphi} & \tilde{\varphi} & \tilde{\varphi} \\ \hline & & & \tilde{\varphi} & \tilde{\varphi} & \tilde{\varphi} & \tilde{\varphi} \\ \hline & & & \tilde{\varphi} & \tilde{\varphi} & \tilde{\varphi} & \tilde{\varphi} \\ \hline & & & \tilde{\varphi} & \tilde{\varphi} & \tilde{\varphi} & \tilde{\varphi} \\ \hline & & & \tilde{\varphi} & \tilde{\varphi} & \tilde{\varphi} & \tilde{\varphi} \\ \hline & & & \tilde{\varphi} & \tilde{\varphi} & \tilde{\varphi} & \tilde{\varphi} \\ \hline & & & \tilde{\varphi} & \tilde{\varphi} & \tilde{\varphi} & \tilde{\varphi} & \tilde{\varphi} \\ \hline & & & \tilde{\varphi} & \tilde{\varphi} & \tilde{\varphi} & \tilde{\varphi} & \tilde{\varphi} & \tilde{\varphi} \\ \hline & & & \tilde{\varphi} \\ \hline & & & \tilde{\varphi} & \tilde$
$\frac{1/2^{-}}{5/2^{+}}$		× × × × × × × × × × × × × × × × × × ×
99/2+)		2038.6
3/2-)		1833.2
$\frac{7/2^{-}}{1/2)^{+}}$		1738.2
(112)		1/01.6
29/2 ⁻)		
//2+)		0.09

²¹⁹₈₈Ra₁₃₁

²¹⁹₈₈Ra₁₃₁

Adopted Levels, Gammas

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $--- \rightarrow \gamma$ Decay (Uncertain)

10 ms *3* 9 ms 2

Adopted Levels, Gammas

 $^{219}_{88}$ Ra₁₃₁