²²³Th α decay (0.60 s) 1992Li09,1987El02,1989An13

	H	History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh et al.,	NDS 175,1 (2021)	19-May-2021

Parent: ²²³Th: E=0.0; $J^{\pi}=(5/2^+)$; $T_{1/2}=0.60$ s 2; $Q(\alpha)=7567$ 4; % α decay=100

²²³Th-J^π,T_{1/2}: (5/2)⁺ in ²²³Th Adopted Levels in the ENSDF database (May 2001 update), based on analogy with 5/2⁺ g.s. of isotonic ²²¹Ra, and also theoretical calculations by 1987Sh24. No new references for T_{1/2} of ²²³Th decay are available after the 2001 evaluation. Evaluators place the assignment in parentheses.

²²³Th-Q(*α*): From 2021Wa16.

²²³Th-% α decay: % α =100 for ²²³Th α decay.

1992Li09: ²²³Th produced in ²⁰⁸Pb(¹⁸O,3n),E=82 MeV, using >99% enriched ²⁰⁸Pb target. Measured $E\alpha$, $I\alpha$, $E\gamma$, % $I\gamma$, $\alpha\gamma$ coin. Deduced γ -ray multipolarities from γ -ray transition intensity balances and I(K x-ray)/I γ ratios. Revised decay scheme, in view of the results from in-beam gamma-ray spectroscopy, is given by 2001Sh14 (also 1993Sh43), together with a detailed theoretical analysis of structure of ²¹⁹Ra.

1987E102: ²²³Th produced in ²⁰⁸Pb(¹⁸O,3n),E=83 MeV. Measured E α , E γ , I γ , Ice, $\alpha\gamma$ coin, α (ce)-coin using Ge(Li) and Si(Li) detectors. Assignment of α -particle groups to ²²³Th is based on agreement with E α values from 1970Va13, and on the observation of Ra x-rays in coincidence with α particles.

1989An13: ²²³Th produced in ²⁰⁸Pb(²²Ne, α 3n),E=100-130 MeV. Measured E α , I α using semiconductor detector.

1990An19: ²²³Th produced in ²⁰⁵Tl(²²Ne,p3n), E=100-109 MeV. Measured E α , I α using semiconductor detector.

1970Va13: ²²³Th produced in ²⁰⁸Pb(¹⁸O,3n),E=108-130 MeV; ²⁰⁵Tl(²²Ne,p3n),E≈100 MeV; ²⁰⁸Pb(¹⁹F,p3n),E=100-130 MeV. Measured Eα, Iα using semiconductor detector.

2001Sh14 (also 1993Sh43): analyzed spectroscopic data from reaction and α -decay experiments. Deduced levels, J, π , configurations.

The decay scheme presented here is from 1992Li09, as modified by 2001Sh14 on the basis of ²⁰⁸Pb(¹⁴C,3n γ) results in 2000Ri12. Evaluators' assignment of (5/2⁺) for 140-keV level, consistent with the favored α decay (HF=2.7) from ²²³Th parent $J^{\alpha}(g.s.)=(5/2^+)$ This decay scheme supersedes that of 1987El02, which included γ rays of 57.1-, 68.2-, and 75.2 keV that defined levels at 57⁻, 68.2-, and 145 keV. 1992Li09 did not see these γ rays in a γ -ray spectrum with about ten times better statistics.

The measured K x-ray intensity of 49% 3 (1992Li09) agrees well with 50% 5 deduced by evaluators (using the RADLST computer program), and confirms the self-consistency of the decay scheme adopted here. The total average radiation energy of 7572 keV 40, deduced using the RADLST code, agrees with $Q(\alpha)=7567$ keV 4 from 2021Wa16.

²¹⁹Ra Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0#	(7/2 ⁺)	9 ms 2	$T_{1/2}$: from Adopted Levels.
16.6 [#] 2	$(11/2^+)$	10 ms 3	%α≈100 (2018Sa45); %IT=?
			Only the α decay to ²¹⁵ Rn has been observed by 2018Sa45.
			$T_{1/2}$: from Adopted Levels.
			The existence of this level is based upon the observation of 97-keV γ rays in coincidence with 7323 keV α particles that populate the 113.7-keV level
			(1992L109). The isomeric character of this state, with an estimate of half-life, and
щ			its α decay mode, has been first proposed by 2018Sa45.
52.0# 3	$(3/2^{+})$		
113.74 [@] 11	$(9/2^+)$		
140.02 [@] 9	$(5/2^+)$		
151.97 [@] 9	$(7/2^+)$		
271.6? 8			J^{π} : very tentative (9/2 ⁻) (2001Sh14).
320.6 4	$(3/2^+, 5/2, 7/2^+)$		J^{π} : (5/2 ⁻) from systematics in 2001Sh14.
328.3 5	$(1/2^+ \text{ to } 7/2^+)$		J^{π} : very tentative (3/2 ⁻) (2001Sh14).
404.75 16	$(3/2^+, 5/2, 7/2^+)$		J^{π} : (5/2 ⁻) from systematics in 2001Sh14.
421.7 12			J^{π} : very tentative (7/2 ⁻) (2001Sh14).
445.0 <i>3</i>	$(5/2^+, 7/2, 9/2^+)$		J^{π} : (7/2 ⁻) from systematics in 2001Sh14.

Continued on next page (footnotes at end of table)

²²³Th α decay (0.60 s) 1992Li09,1987El02,1989An13 (continued)

²¹⁹Ra Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$		Comments
470.7 <i>5</i> 515.4 <i>10</i>	$(5/2^+ \text{ to } 11/2^+)$	J^{π} : (9/2 ⁻) from systematics in 2001Sh14. J ^{π} : very tentative (11/2 ⁻) (2001Sh14).	

[†] Deduced from least-squares fit to γ -ray energies.

[‡] From Adopted Levels, based mainly on proposed assignments by 2001Sh14 (also 1993Sh43) from their analysis of in-beam γ -ray data, band assignments, and analogy with band structures in ²²¹Ra and ²²³Ra.

[#] Member of $K^{\pi} = (1/2^+)$ structure.

^(a) Member of $K^{\pi} = (5/2^+)$ structure.

 α radiations

$E\alpha^{\dagger}$	E(level)	$\mathrm{I}\alpha^{\dagger \#}$	HF [‡]	Comments
6928	515.4	0.4	17	
6972	470.7	0.6	16	
6998	445.0	1.5	8.2	
7021	421.7	0.3	50	
7037	404.75	1.9	9	
7107	328.3	< 0.1	>310	
7120	320.6	0.7	49	
7286 10	151.97	26.4	5.1	$I\alpha$ =28% 10 from γ-transition intensity balance. Eα: others: Eα=7285 10, measured in coincidence with 152γ (1987El02); Eα=7287 10 (original Eα increased by 2 keV because of a change in the energy of the ²¹⁵ Po calibration standard (1970Va13,1977Ma30)); Eα=7290 10 (1990An19). Iα: others: 60 10 (1970Va13,1977Ma30): 41 5 (1990An19).
7298 7	140.02	55.3	2.7	$E\alpha$: other $E\alpha$ =7296 13 (1987El02). $I\alpha$ =46% & from γ -transition intensity balance
7323 5	113.74	13.2	14	E α , I α : other values: E α =7320 20, I α =81 8, multiplet (1989An13). E α =7317 10, I α =40 10 (original E α has been increased by 2 keV because of a change in the energy of the ²¹⁵ Po calibration standard (1970Va13,1977Ma30)). E α =7320 10, I α =29 5 (1990An19). E α =7324 10 (1987El02). Others: 1952Me13, 1969Ha32. I α =10% 9 from γ -transition intensity balance.
7383 [@]	52.0	< 0.5	>570	$I\alpha = 0\%$ 7 from γ -transition intensity balance.
7418 [@]	16.6	< 0.5	>750	, ,
7435 5	0.0	≈1	≈440	E α : value deduced by evaluators from E α =7323 and E(level)=113.7, E α =7298 and E(level)=140.0, and E α =7286 and E(level)=152.0 (1992Li09). E α =7432 reported by 1992Li09.

[†] From 1992Li09, unless otherwise specified. Uncertainty of 5 keV in energy is estimated by evaluators. Values of I α deduced by evaluators from γ -transition intensity balances are given under comments.

[‡] The nuclear radius parameter $r_0(^{219}Ra)=1.5478\ 22$ is deduced from interpolation (or unweighted average) of radius parameters of the adjacent even-even nuclides from 2020Si16.

[#] Absolute intensity per 100 decays.

[@] Existence of this branch is questionable.

$\gamma(^{219}\text{Ra})$

I γ normalization: Absolute γ -ray intensities (per 100 decays of parent) are reported by 1992Li09.

 $\boldsymbol{\omega}$

${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\dagger \#}$	E _i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	J_f^π	Mult.	δ	α [@]	$I_{(\gamma+ce)}^{\#}$	Comments
38.2 3	0.07 3	151.97	(7/2 ⁺)	113.74	(9/2+)	(M1+E2)	0.31 15	132 62	9.3 19	$\alpha(L)=1.0\times10^2 4$; $\alpha(M)=25 11$ $\alpha(N)=6 3$; $\alpha(O)=1.4 6$; $\alpha(P)=0.22 8$; $\alpha(Q)=0.0074 4$ $I_{(\gamma+ce)}$: from in-out intensity balance at 113.7 level. 20% uncertainty is assumed by the evaluators. δ : from $\alpha=132 62$, deduced by evaluators from γ -ray transition intensity balance at the 113-keV level using measured α intensity of 13.2% from 1992Li09.
52.0 3	0.03 1	52.0	(3/2 ⁺)	0.0	(7/2 ⁺)	[E2]		216 7		α (L)=159 5; α (M)=43.1 <i>14</i> α (N)=11.4 4; α (O)=2.41 8; α (P)=0.345 <i>11</i> ; α (Q)=0.000738 22
88.0 5	0.5 4	140.02	(5/2+)	52.0	(3/2 ⁺)	[M1+E2]		11 7	6.3 22	$\alpha(L)=8 5; \alpha(M)=2.1 14; \alpha(N)=0.6 4; \alpha(O)=0.12 8; \alpha(P)=0.018 10; \alpha(Q)=0.0004 3$ $I_{(\gamma+ce)}: \text{ from } \gamma\text{-ray transition intensity balance at 52-keV level using \%\alpha=0 \text{ for } 52\text{-keV level (1992Li09)}. L_{\gamma}: \text{ from } I(\gamma+ce) \text{ and } \alpha(\text{theory}) \text{ for assumed mult=}[M]+F2]$
97.14 <i>17</i>	0.9 1	113.74	(9/2+)	16.6	(11/2+)	M1		3.39		α(L)exp=1.4 3 (1987E102) α(L)=2.57 4; α(M)=0.614 10; α(N)=0.1619 25; α(O)=0.0369 6 α(P)=0.00644 10; α(Q)=0.000506 8 $ E_γ:$ weighted average of 97.2 2 (1992Li09) and 97.10 17 (1987E102). Mult: α(L)exp is ≈60% lower than the theoretical value for M1 (1987E102), however, no other multipolarity is consistent with this conversion coefficient, thus definite M1 is assigned for 97.14-keV transition.
113.74 11	1.6 2	113.74	(9/2+)	0.0	(7/2+)	M1∓		10.83		α (L)exp=1.4 3 (1987El02) α (K)=8.68 13; α (L)=1.627 24; α (M)=0.389 6 α (N)=0.1026 15; α (O)=0.0234 4; α (P)=0.00408 6; α (Q)=0.000320 5 E _{γ} : weighted average of 113.8 1 (1992Li09) and 113.55 17 (1987El02).
119.6 <mark>&</mark>		271.6?		151.97	$(7/2^+)$					

				²²⁵ Th α (decay (0.60 s)	1992Li09,19	87El02,1989An1	3 (continu	ued)
γ ⁽²¹⁹ Ra) (continued)									
E_{γ}^{\dagger}	I_{γ} †#	E _i (level)	J_i^π	E_f	\mathbf{J}_{f}^{π}	Mult.	δ	α [@]	Comments
124.4 ^{&} 140.01 9	5.8 6	445.0 140.02	(5/2 ⁺ ,7/2,9/2 ⁺) (5/2 ⁺)	320.6 0.0	(3/2 ⁺ ,5/2,7/2 ⁺) (7/2 ⁺)	M1 [‡]		5.99	α (L)exp=0.9 <i>l</i> α (K)=4.81 7; α (L)=0.895 <i>l</i> 3; α (M)=0.214 3 α (N)=0.0565 8; α (O)=0.01288 <i>l</i> 9; α (P)=0.00225 <i>4</i> ; α (Q)=0.0001761 25 E _y : weighted average of 140.0 <i>l</i> (1992Li09) and 140.02 9 (1987E102). Mult: α (L)exp is consistent with M1
151.99 10	3.7 4	151.97	(7/2+)	0.0	(7/2+)	M1+E2 [‡]	0.95 +90-50	3.3 10	(δ(E2/M1)<0.5) (1987EI02). α(L)exp=0.77 14; α(M)exp=0.18 8 α(K)=2.1 11; α(L)=0.86 10; α(M)=0.22 4 α(N)=0.059 9; α(O)=0.0128 18; α(P)=0.00203 17; α(Q)=8.E-5 4 E _γ : weighted average of 152.0 1 (1992Li09) and 151.98 12 (1987EI02). Mult,δ: from α=3.3 10 (deduced by evaluators from γ-ray transition intensity balance at the 152-keV level using measured α intensity of 26.4% from 1992Li09). α(L)exp and α(M)exp from 1987EI02 give δ(E2/M1)<10.
57.8 & 68.8 5 188.4 7 252.8 2 264.7 2 268.0 10 276.1 6 293.0 5 305.0 5 318.8 7 320.6 8 331.3 5 353.0 356.9 7 401.7 10 421.7 12	$\begin{array}{c} 0.06 \ 3 \\ \approx 0.02 \\ 0.30 \ 9 \\ 0.7 \ 2 \\ \approx 0.1 \\ 0.04 \ 2 \\ 0.20 \ 5 \\ 0.2 \ 1 \\ 0.06 \ 3 \\ \approx 0.02 \\ 0.2 \ 1 \\ \approx 0.02 \\ 0.10 \ 6 \\ 0.06 \ 3 \\ \approx 0.03 \end{array}$	$\begin{array}{c} 271.6?\\ 320.6\\ 328.3\\ 404.75\\ 320.6\\ 328.3\\ 445.0\\ 445.0\\ 470.7\\ 320.6\\ 445.0\\ 404.75\\ 470.7\\ 515.4\\ 421.7\\ \end{array}$	$\begin{array}{c} (3/2^+,5/2,7/2^+)\\ (1/2^+ \ {\rm to}\ 7/2^+)\\ (3/2^+,5/2,7/2^+)\\ (3/2^+,5/2,7/2^+)\\ (3/2^+,5/2,7/2^+)\\ (1/2^+ \ {\rm to}\ 7/2^+)\\ (5/2^+,7/2,9/2^+)\\ (5/2^+,7/2,9/2^+)\\ (5/2^+,7/2,9/2^+)\\ (5/2^+,7/2,9/2^+)\\ (5/2^+,7/2,9/2^+)\\ (5/2^+,7/2,9/2^+)\\ (5/2^+ \ {\rm to}\ 11/2^+)\\ \end{array}$	$\begin{array}{c} 113.74\\ 151.97\\ 140.02\\ 151.97\\ 140.02\\ 52.0\\ 52.0\\ 151.97\\ 140.02\\ 151.97\\ 0.0\\ 113.74\\ 52.0\\ 113.74\\ 113.74\\ 0.0\\ \end{array}$	$\begin{array}{c} (9/2^+) \\ (7/2^+) \\ (5/2^+) \\ (5/2^+) \\ (5/2^+) \\ (3/2^+) \\ (3/2^+) \\ (7/2^+) \\ (5/2^+) \\ (7/2^+) \\ (7/2^+) \\ (9/2^+) \\ (9/2^+) \\ (9/2^+) \\ (9/2^+) \\ (7/2^+) \end{array}$				

[±] Deduced from K x ray/I γ ratios in $\alpha\gamma$ coin experiments (1992Li09).

4

From ENSDF

 $^{219}_{88}$ Ra $_{131}$ -4

²²³Th α decay (0.60 s) **1992Li09,1987El02,1989An13** (continued)

γ (²¹⁹Ra) (continued)

[#] Absolute intensity per 100 decays.

[@] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ-ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[&] Placement of transition in the level scheme is uncertain.

²²³Th α decay (0.60 s) 1992Li09,1987El02,1989An13

