²²³Np α decay (2.2 μ s) 2017Su18,2020Wa16

History					
Туре	Author	Citation	Literature Cutoff Date		
Full Evaluation	Balraj Singh et al.,	NDS 175, 1 (2021)	19-May-2021		

Parent: ²²³Np: E=0; $J^{\pi}=(9/2^{-})$; $T_{1/2}=2.2 \ \mu s + 10-5$; $Q(\alpha)=9672 \ 37$; % $\alpha \ decay=100.0$

²²³Np-J^{π},T_{1/2}: From 2017Su18.

²²³Np-Q(α): Deduced by evaluators from measured E α =9499 36 (2020Wa16). 2017Su18 give Q(α)=9687 keV 45. 2021Wa16 give 9650 40.

 $^{223}\text{Np-}\%\alpha$ decay: $\%\alpha{=}100$ for ^{223}Np α decay.

2017Su18: ²²³Np produced in ¹⁸⁷Re(⁴⁰Ar,4n),E=188 MeV, beam from the Sector-focusing cyclotron (SFC) of HIRFL-Lanzhou facility. Target=460 μ g/cm² thick sputtered on 80 μ g/cm² thick carbon foils. Evaporation residues were separated using the recoil separator SHANS, and implanted into a 300– μ m double-sided silicon strip detector (DSSSD). Measured E α , and half-life of ²²³Np and ²¹⁹Pa decays. FWHM=22-30 keV for E α =7 MeV. In 2020Wa16, measurements and analyses are described about the spectroscopic information of pile-up pulses from the decays of very short-lived nuclei. Reanalyzed ER- α correlated data from 2017Su18 and obtained E α =9499 keV 36 as compared to their earlier value of 9477 keV 44 in 2017Su18.

²¹⁹Pa Levels

E(level)	J^{π}	T _{1/2}	Comments
0	9/2-	54 ns 10	$J^{\pi}, T_{1/2}$: from the Adopted Levels.

 α radiations

Εα	E(level)	Comments		
9499 36	0	 Eα=9499 keV 36 (2020Wa16). An earlier value of 9477 keV 44 in 2017Su18 (from the same group as 2020Wa16) from the decay of ²²³Np was obtained from measured α energy of 9976 keV 37 for ²¹⁹Pa decay in events #1 and #6 in authors' Table 1, and subtracting this energy from summed α energy of 19453 23 obtained from the first five events for α decays of ²²³Np and its daughter ²¹⁹Pa. Only in the first five events in Table 1, deposited α-sum energies of ²²³Np and ²¹⁹Pa were consistent within 50 keV of 19453 keV 23, suggesting that only one α line (Eα=9477 keV) was emitted by ²²³Np. Deduced α reduced width in Rasmussen formalism, (δ²)=0.17 MeV +8-4 (2017Su18), assuming the same J^π values for parent and daughter ground states. Evaluators deduce HF≈0.4 for estimated r₀=1.50 fm 2, based on r₀=1.529 fm 15 for ²¹⁸Th (2020Si16), and extrapolated r₀≈1.46 2 for ²²⁰U, with the assumption of a single g.s. to g.s. α transition in this decay. Low hindrance factor suggests favored α transition, consistent with the assigned J^π values for the ground states of ²²³Np and ²¹⁹Pa. 		