Adopted Levels, Gammas

]	History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh et al.,	NDS 175, 1 (2021)	19-May-2021

 $Q(\beta^{-}) = -777 \ 10$; $S(n) = 6514 \ 8$; $S(p) = 3889 \ 7$; $Q(\alpha) = 7448.6 \ 18$ 2021Wa16

S(2n)=11840 9, S(2p)=10356 8 (2021Wa16).

Additional information 1. 1948Gh01: ²¹⁹Fr identified in α decay chain: ²²⁷Pa \rightarrow ²²³Ac \rightarrow ²¹⁹Fr, where ²²⁷Pa was produced at the 184-inch Berkeley cyclotron. Short half-life for the decay of ²¹⁹Fr was deduced. Later studies at Berkeley by 1951Me10, 1963Su10 and 1964Hy02 measured a more definite half-life of ²¹⁹Fr decay.

2014Bu06, 2015De28: measured hyperfine spectra, magnetic dipole moment, electric quadrupole moment and rms charge radius by Collinear Resonance Ionization Spectroscopy (CRIS) using HRS mass separator, ISCOOL gas-filled segmented linear Paul trap, and RILIS at ISOLDE-CERN facility. Both the measurements are for the ground state.

Some aspects of the level scheme and band assignments as proposed by 1991Li19 (see also 1992Kv03, 2002Sh19) should be considered as tentative, as the J^{π} values are mostly based on band assignments, and theoretical calculations, without a clear evidence of association of some of the levels to particular bands, especially for closely spaced levels.

Theoretical calculations: 27 primary references in the NSR database (www.nndc.bnl.gov/nsr), eight related to structure calculations, and 19 to radioactivity.

²¹⁹Fr Levels

Configuration and band assignments are from 1991Li19 (see also 2002Sh19).

Cross Reference (XREF) Flags

Α	²²³ Ac	α	decay	(2	.10	min))
---	-------------------	---	-------	----	-----	------	---

E(level) [†]	$J^{\pi \#}$	T _{1/2}	XREF	Comments
0.0&	9/2-	24 ms 4	A	%α=100 μ=+3.13 4 (2015De28,2014Bu06) Q=-1.21 2 (2015De28) $δ < r^2 > (^{219} Fr,^{221} Fr) = -0.272 fm^2 6$ (2014Bu06). μ,Q: measured by 2015De28, Collinear Resonance Ionization Spectroscopy. Values are relative to the magnetic dipole moment of +1.57 2 and electric quadrupole moment of -1.00 <i>I</i> for the ground state of ²²¹ Fr taken from literature. Other: $μ$ =+3.11 4 (2014Bu06, same group as 2015De28). Values are not available in 2014StZZ and 2016St14 evaluations. J ^π : favored α decay (HF=1.1) to ²¹⁵ At g.s. (J ^π =9/2 ⁻). T _{1/2} : unweighted average of 28 ms 3 (2018Sa45) and 20 ms 2 (1951Me10). Others: 21.5 ms (1963Su10, 1964Hy02): ≈0.1 ms (1948Gh01).
15.0 <mark>&</mark> 1	(5/2-)		Α	
56.1 ^b 1	$(3/2^{-})$		Α	
73? ^{&} 1	$(13/2^{-})$		Α	
81.0 ^{&} 5	$(1/2^{-})$		Α	
98.58 ^b 5	$(7/2^{-})$		Α	J^{π} : parity from 98.6, (M1) γ to 9/2 ⁻ g.s.
134.4 ^b 1	(5/2 ⁻)		Α	J^{π} : parity from 35.7, (M1) γ to (7/2 ⁻), 98.6 level.
139.8 ^{&} 1	$(3/2^{-})$		Α	
191.29 ^{<i>a</i>} 6	$(7/2^+)$		Α	J^{π} : γ to (7/2 ⁻), 98.6 level, possible band member.
$210.4^{a} 2$ $216.0^{a} 1$	$(3/2^+)$ $(11/2^+)$		A A	

²¹⁹Fr Levels (continued)

E(level) [†]	J ^{π#}	XREF	Comments
269.2 ^{&} 1	$(7/2^{-})$	A	
305.5 ^b 1	$(9/2^{-})$	Α	
325? ^{‡@} 2		Α	J^{π} : possible (5/2 ⁻).
333.5 <mark>&</mark> 1	$(11/2^{-})$	Α	
340.3 [°] 1	$(5/2^+)$	Α	
369.5 [°] 2	$(3/2^+)$	Α	J^{π} : 1991Li19 assign π =+ or -, band association favors positive parity.
372.4 [°] 1	$(7/2^+)$	Α	
374.8 [@] 2	(7/2)	Α	J^{π} : possible negative parity.
384.3 ^{<i>a</i>} 1	$(5/2^+)$	Α	
432.0 [@] 2	(9/2)	A	J^{π} : possible negative parity.
445? [‡] 4		Α	
462.2 [°] 5	$(9/2^+)$	Α	J ^{π} : 1991Li19 assign π =+ or -, band association favors positive parity.
490.3 ^d 1	$(5/2^{-})$	Α	
506.5 ^a 3	$(9/2^+)$	Α	
530.0 ^c 5	$(11/2^+)$	Α	
533.8 ^d 4	$(7/2^{-})$	Α	
589 ^d 1	(9/2 ⁻)	Α	
650 ^{‡d} 3	$(11/2^{-})$	Α	
705.5 ^e 5	$(5/2^+)$	Α	
778 ^{‡e} 1	$(7/2^+)$	Α	

[†] From ²²³Ac α decay.

[‡] Weakly populated level by α branch, the gamma transition is either not confirmed or not observed.

^{# 219}Fr lies in the transitional region between quadrupole deformation and spherical shape ($\epsilon_2 = \epsilon_3 = 0.08$). For some reason, however, this nucleus presents the typical structure of parity doublet bands (1990Li33,1991Li19). Most of the assigned spins and parities are based mainly on rotational band structure, γ -ray multipolarities and decay patterns, favored α decay from ²²³Ac and to ²¹⁵At, and on a comparison with similar band structures observed in ²²¹Fr. See also 2002Sh19 for configurations. Assignments for the excited states are considered as tentative.

[@] Possible configuration= $\pi 5/2[523] + \pi 5/2[512] + (\pi 1/2[541] + Q_{30})$.

[&] Band(A): $K^{\pi} = 1/2^{-}, \pi 1/2[541]$, parity doublet band.

^{*a*} Band(a): $K^{\pi} = 1/2^+$, parity doublet band. Configuration = $\pi 1/2[411] + (\pi 1/2[541] + Q_{30})$.

^b Band(B): $K^{\pi} = 3/2^{-}$, parity doublet band. Configuration= $\pi 3/2[532] + (\pi 3/2[402] + Q_{30})$.

^c Band(b): $K^{\pi} = 3/2^+$, parity doublet band. Configuration= $\pi 3/2[402] + (\pi 3/2[532] + Q_{30})$.

^d Band(C): $K^{\pi} = 5/2^{-}$, parity doublet band. Configuration = $\pi 5/2[512] + \pi 5/2[523] + (\pi 1/2[660] + Q_{30})$.

^e Band(c): $K^{\pi} = 5/2^+$, parity doublet band. Configuration= $\pi 5/2[402] + (\pi 5/2[523] + Q_{30})$.

γ (²¹⁹ Fr)										
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$E_f J_f^{\pi}$	Mult. [†]	δ^{\dagger}	α^{\ddagger}	Comments		
15.0	(5/2 ⁻)	(15.0)	100	0.0 9/2-	[E2]	_	2.36×10 ⁴	α (M)=1.786×10 ⁴ 25 α (N)=4.66×10 ³ 7; α (O)=959 14; α (P)=120.9 17; α (Q)=0.1125 16		
56.1	(3/2 ⁻)	41.15 10	100	15.0 (5/2 ⁻)	(M1+E2)	1.0 2	3.3×10 ² 7	α (L)=2.4×10 ² 5; α (M)=65 13 α (N)=17 4; α (O)=3.5 7; α (P)=0.46 9; α (Q)=0.0024 3		
73?	(13/2 ⁻)	72.8 ^{#@}	100	0.0 9/2-	[E2]		39.4	α (L)=29.0 4; α (M)=7.84 11		

γ ⁽²¹⁹Fr) (continued) E_{γ}^{\dagger} I_{γ}^{\dagger} Mult. α^{\ddagger} E_i(level) J_i^{π} \mathbf{E}_{f} J_f^{π} Comments $\alpha(N)=2.05 3; \alpha(O)=0.425 6;$ α (P)=0.0544 8; α (Q)=0.0001003 14 66.0[@] 5 81.0 $(1/2^{-})$ 100 15.0 $(5/2^{-})$ [E2] 63 3 $\alpha(L)=46.4$ 19; $\alpha(M)=12.5$ 5 $\alpha(N)=3.28 \ 13; \ \alpha(O)=0.68 \ 3;$ α (P)=0.087 4; α (Q)=0.000149 6 98.58 $(7/2^{-})$ 42.4 1 1.4 3 56.1 $(3/2^{-})$ (E2) 538 10 $\alpha(L)=397 8; \alpha(M)=106.8 20$ $\alpha(N)=27.95; \alpha(O)=5.7611;$ α(P)=0.733 14; α(Q)=0.001019 18 83.55 10 $(5/2^{-})$ 4.75 64 4 15.0 (M1) α (L)=3.60 6; α (M)=0.859 13 $\alpha(N)=0.225$ 4; $\alpha(O)=0.0504$ 8; $\alpha(P)=0.00808 \ 12; \ \alpha(Q)=0.000452 \ 7$ 98.58 5 100.0 22 0.0 $9/2^{-}$ (M1) 2.94 $\alpha(L)=2.23$ 4; $\alpha(M)=0.532$ 8 $\alpha(N)=0.1395\ 20;\ \alpha(O)=0.0312\ 5;$ α(P)=0.00500 7; α(Q)=0.000279 4 134.4 $(5/2^{-})$ 35.7 1 25 4 98.58 (7/2⁻) (M1) 57.5 10 $\alpha(L)=43.6 8; \alpha(M)=10.41 17$ $\alpha(N)=2.73$ 5; $\alpha(O)=0.611$ 10; α(P)=0.0979 16; α(Q)=0.00549 9 78.25 10 50.6 $(3/2^{-})$ [M1] 5.75 α(L)=4.36 7; α(M)=1.040 15 56.1 $\alpha(N)=0.273$ 4; $\alpha(O)=0.0610$ 9; α (P)=0.00978 15; α (Q)=0.000547 8 119.4 1 100 9 15.0 $(5/2^{-})$ (M1) 8.65 $\alpha(K)=6.96\ 10;\ \alpha(L)=1.283\ 19;$ a(M)=0.306 5 $\alpha(N)=0.0802$ 12; $\alpha(O)=0.0179$ 3; $\alpha(P)=0.00288 4; \alpha(Q)=0.0001607 23$ 139.8 $(3/2^{-})$ 124.8 1 100 15.0 $(5/2^{-})$ (M1) 7.63 $\alpha(K)=6.14$ 9; $\alpha(L)=1.130$ 16; $\alpha(M)=0.269~4$ α (N)=0.0706 *10*; α (O)=0.01579 *23*; α (P)=0.00253 4; α (Q)=0.0001414 20 191.29 $(7/2^+)$ 56.95 20 6.4 10 134.4 $(5/2^{-})$ 0.481 9 $\alpha(L)=0.365$ 7; $\alpha(M)=0.0886$ 15 [E1] $\alpha(N)=0.0227 4; \alpha(O)=0.00473 8;$ α (P)=0.000634 11; α (Q)=1.93×10⁻⁵ 3 92.71 5 0.1309 α(L)=0.0993 14; α(M)=0.0239 4 66 3 98.58 (7/2⁻) [E1] $\alpha(N)=0.00616\ 9;\ \alpha(O)=0.001310\ 19;$ α (P)=0.000185 3; α (Q)=6.59×10⁻⁶ 10 176.3 2 193 0.1194 $\alpha(K)=0.0951$ 14; $\alpha(L)=0.0185$ 3; 15.0 $(5/2^{-})$ [E1] $\alpha(M) = 0.00441$ 7 $\alpha(N)=0.001145 \ 17; \ \alpha(O)=0.000248 \ 4;$ $\alpha(P)=3.68\times10^{-5}$ 6: $\alpha(O)=1.545\times10^{-6}$ 22 100 7 0.0 0.098 $\alpha(K)=0.0783 \ 11; \ \alpha(L)=0.0150 \ 2;$ 191.3 *1* $9/2^{-}$ [E1] $\alpha(M) = 0.003585$ α (N)=0.000930 *13*; α (O)=0.000202 *3*; $\alpha(P)=3.01\times10^{-5}$ 5; $\alpha(Q)=1.287\times10^{-6}$ 18 210.4 $(3/2^+)$ 195.4 2 100 15.0 $(5/2^{-})$ (E1) 0.0932 $\alpha(K)=0.0745 \ 11; \ \alpha(L)=0.01424 \ 21;$ $\alpha(M) = 0.003405$ α (N)=0.000881 *13*; α (O)=0.000191 *3*; $\alpha(P)=2.86\times10^{-5}$ 4; $\alpha(Q)=1.227\times10^{-6}$ 18 216.0 $(11/2^+)$ 216.0 1 100 0.0 $9/2^{-}$ [E1] 0.0734 $\alpha(K)=0.0588 9; \alpha(L)=0.01107 16;$ $\alpha(M) = 0.00264 \ 4$ α (N)=0.000685 *10*; α (O)=0.0001491 *21*; $\alpha(P)=2.24\times10^{-5}$ 4; $\alpha(Q)=9.82\times10^{-7}$ 14 269.2 $(7/2^{-})$ 134.6 3 ≈ 10 $134.4 \quad (5/2^{-})$ [M1+E2] 4.3 18 α(K)=2.6 24; α(L)=1.28 37; α(M)=0.33 12

γ ⁽²¹⁹Fr) (continued)</sup>

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. [†]	α^{\ddagger}	Comments
269.2	(7/2 ⁻)	254.4 3	70 20	15.0	(5/2-)	[M1+E2]	0.63 40	$\alpha(N)=0.087 \ 30; \ \alpha(O)=0.0185 \ 58; \\ \alpha(P)=0.0026 \ 6; \ \alpha(Q)=6.3\times10^{-5} \ 51 \\ \alpha(K)=0.46 \ 37; \ \alpha(L)=0.128 \ 23; \\ \alpha(M)=0.032 \ 4 \\ \alpha(N)=0.0084 \ 10; \ \alpha(O)=0.0018 \ 3; \end{cases}$
		269.2 1	100 20	0.0	9/2-	[M1+E2]	0.54 <i>34</i>	α (P)=0.00027 7; α (Q)=1.06×10 ⁻⁵ 82 α (K)=0.40 31; α (L)=0.107 22; α (M)=0.027 4 α (N)=0.0070 11; α (O)=0.0015 3;
305.5	(9/2 ⁻)	89.6 2	26 5	216.0	(11/2+)	[E1]	0.1433 22	α (P)=2.28×10 ⁻⁴ 60; α (Q)=9.1×10 ⁻⁶ 70 α (L)=0.1087 17; α (M)=0.0262 4 α (N)=0.00675 11; α (O)=0.001433 22;
		207.0 2	100 21	98.58	(7/2 ⁻)	[M1+E2]	1.2 7	α (P)=0.000202 3; α (Q)=7.11×10 ⁻⁶ 11 α (K)=0.8 7; α (L)=0.258 11; α (M)=0.0652 17
		305.5 1	95 <i>11</i>	0.0	9/2-	[M1+E2]	0.38 25	$\begin{aligned} &\alpha(N) = 0.0171 \ 5; \ \alpha(O) = 0.00370 \ 7; \\ &\alpha(P) = 0.00054 \ 6; \ \alpha(Q) = 1.9 \times 10^{-5} \ 15 \\ &\alpha(K) = 0.28 \ 22; \ \alpha(L) = 0.071 \ 20; \\ &\alpha(M) = 0.018 \ 4 \\ &\alpha(N) = 0.0046 \ 11; \ \alpha(O) = 1.01 \times 10^{-3} \ 26; \end{aligned}$
333.5	(11/2 ⁻)	64.4 <i>3</i>	≈18	269.2	(7/2 ⁻)	[E2]	70.8 19	$\alpha(P)=1.53\times10^{-4} 50; \ \alpha(Q)=6.5\times10^{-6} 49$ $\alpha(L)=52.2 \ 14; \ \alpha(M)=14.1 4$ $\alpha(N)=3.69 \ 10; \ \alpha(O)=0.764 \ 21;$
		333.5 1	100 36	0.0	9/2-	[M1+E2]	0.30 19	α (P)=0.098 3; α (Q)=0.000164 4 α (K)=0.22 17; α (L)=0.054 17; α (M)=0.0133 36
340.3	(5/2+)	205.7 3	20 10	134.4	(5/2-)	[E1]	0.0824	$\begin{aligned} &\alpha(N) = 0.00350 \ 94; \ \alpha(O) = 7.7 \times 10^{-4} \ 23; \\ &\alpha(P) = 1.17 \times 10^{-4} \ 42; \ \alpha(Q) = 5.1 \times 10^{-6} \ 38 \\ &\alpha(K) = 0.0659 \ 10; \ \alpha(L) = 0.01251 \ 19; \\ &\alpha(M) = 0.00298 \ 5 \\ &\alpha(N) = 0.000774 \ 12; \ \alpha(O) = 0.0001683 \ 25; \\ &\alpha(P) = 2.52 \times 10^{-5} \ 4; \ \alpha(Q) = 1.095 \times 10^{-6} \end{aligned}$
		241.7 2	90 10	98.58	(7/2-)	[E1]	0.0563	$\begin{array}{c} 10 \\ \alpha(\text{K})=0.0452 \ 7; \ \alpha(\text{L})=0.00839 \ 12; \\ \alpha(\text{M})=0.00200 \ 3 \\ \alpha(\text{N})=0.000519 \ 8; \ \alpha(\text{O})=0.0001131 \ 16; \\ \alpha(\text{D})=1.700 \times 10^{-5} \ 25 \times \alpha(\text{O}) \ 7.(7\times 10^{-7})^{-7} \end{array}$
		284.2 1	100 <i>10</i>	56.1	(3/2 ⁻)	[E1]	0.0387	$\alpha(P)=1.709\times10^{-2}23; \ \alpha(Q)=7.67\times10^{-7}$ <i>II</i> $\alpha(K)=0.0312 \ 5; \ \alpha(L)=0.00567 \ 8; \alpha(M)=0.000350 \ 5; \ \alpha(O)=7.66\times10^{-5} \ 11; \alpha(P)=1.167\times10^{-5} \ 17; \ \alpha(Q)=5.39\times10^{-7}$
		325.3 1	25 10	15.0	(5/2 ⁻)	[E1]	0.0285	8 α(K)=0.0231 4; α(L)=0.00412 6; α(M)=0.000977 14
369.5	(3/2+)	229.7 2	100	139.8	(3/2-)	[E1]	0.0634	$\alpha(N)=0.000254 \ 4; \ \alpha(O)=5.58\times10^{-3} \ 8; \\ \alpha(P)=8.55\times10^{-6} \ 12; \ \alpha(Q)=4.05\times10^{-7} \ 6 \\ \alpha(K)=0.0509 \ 8; \ \alpha(L)=0.00951 \ 14; \\ \alpha(M)=0.00226 \ 4 \\ \alpha(N)=0.000588 \ 9; \ \alpha(O)=0.0001281 \ 19; \end{cases}$
372.4	(7/2+)	238.1 2	39 6	134.4	(5/2 ⁻)	[E1]	0.0583	$\begin{aligned} &\alpha(P) = 1.93 \times 10^{-5} \ 3; \ \alpha(Q) = 8.57 \times 10^{-7} \ 13 \\ &\alpha(K) = 0.0468 \ 7; \ \alpha(L) = 0.00870 \ 13; \\ &\alpha(M) = 0.00207 \ 3 \\ &\alpha(N) = 0.000538 \ 8; \ \alpha(O) = 0.0001173 \ 17; \\ &\alpha(P) = 1.77 \times 10^{-5} \ 3; \ \alpha(Q) = 7.92 \times 10^{-7} \ 12 \end{aligned}$

γ ⁽²¹⁹Fr) (continued)</sup>

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [†]	α^{\ddagger}	Comments
372.4	(7/2+)	274.0 2	28 6	98.58	(7/2 ⁻)	[E1]	0.0421	$\alpha(K)=0.0339 5; \alpha(L)=0.00618 9; \alpha(M)=0.001470 21 \alpha(N)=0.000382 6; \alpha(O)=8.35\times10^{-5} 12; \alpha(P)=1.271\times10^{-5} 18; \alpha(Q)=5.84\times10^{-7} o$
		357.4 1	100 17	15.0	(5/2 ⁻)	[E1]	0.0232	$\alpha(K)=0.0188 \ 3; \ \alpha(L)=0.00332 \ 5; \ \alpha(M)=0.000786 \ 11 \ \alpha(N)=0.000204 \ 3; \ \alpha(O)=4.49\times10^{-5} \ 7; \ \alpha(D)=6 \ 01\times10^{-6} \ 10; \ \alpha(O)=2 \ 22\times10^{-7} \ 5$
		372.4 1	89 17	0.0	9/2-	[E1]	0.0212	$\alpha(\mathbf{K}) = 0.91\times10^{-10}, \ \alpha(\mathbf{Q}) = 3.53\times10^{-5} \text{ s}$ $\alpha(\mathbf{K}) = 0.01720 \ 25; \ \alpha(\mathbf{L}) = 0.00302 \ 5; \ \alpha(\mathbf{M}) = 0.000715 \ 10^{-5} \ 6; \ \alpha(\mathbf{N}) = 0.000186 \ 3; \ \alpha(\mathbf{O}) = 4.09\times10^{-5} \ 6; \ \alpha(\mathbf{M}) = 0.000186 \ 3; \ \alpha(\mathbf{O}) = 4.09\times10^{-5} \ 6; \ \alpha(\mathbf{M}) = 0.000186 \ 3; \ \alpha(\mathbf{O}) = 4.09\times10^{-5} \ 6; \ \alpha(\mathbf{M}) = 0.000186 \ 3; \ \alpha(\mathbf{O}) = 4.09\times10^{-5} \ 6; \ \alpha(\mathbf{M}) = 0.000186 \ 3; \ \alpha(\mathbf{O}) = 4.09\times10^{-5} \ 6; \ \alpha(\mathbf{M}) = 0.000186 \ 3; \ \alpha(\mathbf{O}) = 4.09\times10^{-5} \ 6; \ \alpha(\mathbf{M}) = 0.000186 \ 3; \ \alpha(\mathbf{O}) = 4.09\times10^{-5} \ 6; \ \alpha(\mathbf{M}) = 0.000186 \ 3; \ \alpha(\mathbf{O}) = 4.09\times10^{-5} \ 6; \ \alpha(\mathbf{M}) = 0.000186 \ 3; \ \alpha(\mathbf{M}) = 0.000186 \$
374.8 384.3	(7/2) (5/2 ⁺)	374.8 2 285.7 1	100 100	0.0 98.58	9/2 ⁻ (7/2 ⁻)	[D,E2] [E1]	0.19 <i>17</i> 0.0382	$\alpha(P)=6.31\times10^{-6} \; 9; \; \alpha(Q)=3.05\times10^{-7} \; 5$ $\alpha(K)=0.0309 \; 5; \; \alpha(L)=0.00560 \; 8; \\ \alpha(M)=0.001329 \; 19 \\ \alpha(N)=0.000346 \; 5; \; \alpha(O)=7.56\times10^{-5} \; 11; $
								α (P)=1.152×10 ⁻⁵ <i>17</i> ; α (Q)=5.33×10 ⁻⁷ 8
432.0	(9/2)	126.4 2 216.1 2	≈25 100 <i>50</i>	305.5 216.0	$(9/2^{-})$ $(11/2^{+})$	[D,E2] [D,E2]	3.8 <i>35</i> 0.84 <i>77</i>	
462.2	(9/2+)	462.2 5	100	0.0	9/2-	[E1]	0.01339	$\begin{aligned} &\alpha(\mathbf{K}) = 0.01093 \ 16; \ \alpha(\mathbf{L}) = 0.00187 \ 3; \\ &\alpha(\mathbf{M}) = 0.000442 \ 7 \\ &\alpha(\mathbf{N}) = 0.0001152 \ 17; \ \alpha(\mathbf{O}) = 2.54 \times 10^{-5} \ 4; \end{aligned}$
490.3	(5/2-)	279.8 3	5.7 19	210.4	(3/2+)	[E1]	0.0401	$\alpha(P)=3.95\times10^{-6} 6; \alpha(Q)=1.98\times10^{-7} 3$ $\alpha(K)=0.0323 5; \alpha(L)=0.00588 9;$ $\alpha(M)=0.001398 20$ $\alpha(N)=0.000363 6; \alpha(O)=7.95\times10^{-5} 12;$ $\alpha(N)=0.000363 0; \alpha(O)=7.95\times10^{-5} 12;$
		299.1 2	5.7 19	191.29	(7/2+)	[E1]	0.0344	$\alpha(P)=1.210\times10^{-5} 18; \ \alpha(Q)=5.58\times10^{-7} \\ 8 \\ \alpha(K)=0.0278 \ 4; \ \alpha(L)=0.00502 \ 7; \\ \alpha(M)=0.001191 \ 17 \\ \alpha(N)=0.000310 \ 5; \ \alpha(Q)=6.78\times10^{-5} \ 10; \\ \alpha(P)=1.036\times10^{-5} \ 15; \ \alpha(Q)=4.84\times10^{-7} \\ \alpha(Q)=4.8\times10^{-7} \\ \alpha(Q)=4.8\times10^{-7}$
		434.2 1	100 9	56.1	(3/2 ⁻)	[M1+E2]	0.145 93	$\alpha(K)=0.112 \ 81; \ \alpha(L)=0.025 \ 10; \ \alpha(M)=0.0060 \ 23 \ \alpha(N)=0.00158 \ 59; \ \alpha(O)=3.5\times10^{-4} \ 14;$
		475.2 1	51 8	15.0	(5/2 ⁻)	[M1+E2]	0.114 73	$\alpha(P)=5.4\times10^{-5} 24; \ \alpha(Q)=2.5\times10^{-6} 18$ $\alpha(K)=0.089 \ 63; \ \alpha(L)=0.0190 \ 81;$ $\alpha(M)=0.0046 \ 19$ $\alpha(N)=0.00121 \ 48; \ \alpha(O)=2.7\times10^{-4} \ 11;$
506.5	(9/2+)	315.2 3	33	191.29	(7/2+)	[M1+E2]	0.35 23	$\alpha(P)=4.2\times10^{-5} \ 19; \ \alpha(Q)=2.0\times10^{-6} \ 14$ $\alpha(K)=0.26 \ 20; \ \alpha(L)=0.065 \ 19;$ $\alpha(M)=0.016 \ 4$
		506.6 5	100 67	0.0	9/2-	[E1]	0.0111	$\alpha(N)=0.0042 \ 10; \ \alpha(O)=9.1\times10^{-4} \ 25; \alpha(P)=1.39\times10^{-4} \ 47; \ \alpha(Q)=5.9\times10^{-6} \ 45 \alpha(K)=0.00907 \ 13; \ \alpha(L)=0.001540 \ 22; \alpha(M)=0.000363 \ 6 \alpha(D)=0.46 \ 10^{-5} \ 14 \ (Q)=2.00 \ 10^{-5} \ 200 \ 10^{-5} \ $
530.0	(11/2+)	530.0 5	100	0.0	9/2-	[E1]	0.01013	$\alpha(N)=9.46\times10^{-5} \ 14; \ \alpha(O)=2.09\times10^{-5} \ 3; \\ \alpha(P)=3.26\times10^{-6} \ 5; \ \alpha(Q)=1.651\times10^{-7} \\ 24 \\ \alpha(K)=0.00829 \ 12; \ \alpha(L)=0.001401 \ 20; \\ \alpha(M)=0.000330 \ 5 $

γ ⁽²¹⁹Fr) (continued) I_{γ}^{\dagger} α^{\ddagger} E_{γ}^{\dagger} Mult.[†] Comments E_i(level) J_i^{π} \mathbf{E}_{f} J_f^{π} $\alpha(N) = 8.60 \times 10^{-5} \ 13; \ \alpha(O) = 1.90 \times 10^{-5} \ 3;$ $\alpha(P)=2.97\times10^{-6}$ 5; $\alpha(Q)=1.513\times10^{-7}$ 22 $\alpha(K)=0.071$ 49; $\alpha(L)=0.0148$ 66; 533.8 518.8 4 100 $15.0 (5/2^{-})$ [M1+E2] 0.091 57 $(7/2^{-})$ $\alpha(M) = 0.0036 \ 15$ α (N)=9.4×10⁻⁴ 39; α (O)=2.09×10⁻⁴ 90; α (P)=3.3×10⁻⁵ 16; α (Q)=1.6×10⁻⁶ 11 82.4[@] α(L)=0.1359 19; α(M)=0.0328 5 100 0.179 589 $(9/2^{-})$ 506.5 (9/2+) [E1] *α*(N)=0.00844 *12*; *α*(O)=0.00179 *3*; $\alpha(P)=0.000250 4; \alpha(Q)=8.57\times 10^{-6} 12$ $\alpha(K)=0.1013 \ 15; \ \alpha(L)=0.0198 \ 3;$ 705.5 $(5/2^+)$ 171.7 3 100 50 533.8 (7/2-) [E1] 0.1273 $\alpha(M)=0.00472~7$ $\alpha(N) = 0.001225 \ 18; \ \alpha(O) = 0.000265 \ 4;$ $\alpha(P)=3.93\times10^{-5}$ 6; $\alpha(Q)=1.640\times10^{-6}$ 24 199.3[@] 4 15×10¹ 10 506.5 (9/2+) 0.560 9 [E2] 72.8^{#@} α (L)=17 *12*; α (M)=4.6 *33* 778 $(7/2^+)$ 100 705.5 (5/2+) 23 17 [M1+E2] α(N)=1.20 86; α(O)=0.25 18; α(P)=0.033 22; $\alpha(Q)=3.9\times10^{-4}$ 29

[†] From ²²³Ac α decay.

^{\ddagger} Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[#] Multiply placed.

[@] Placement of transition in the level scheme is uncertain.

6

 $^{219}_{87}\mathrm{Fr}_{132}$

 $^{219}_{87}\mathrm{Fr}_{132}$

Adopted Levels, Gammas

 $^{219}_{87}\mathrm{Fr}_{132}$

 $^{219}_{87}\mathrm{Fr}_{132}$