Adopted Levels, Gammas

History							
Type Author		Citation	Literature Cutoff Date				
Full Evaluation	Balraj Singh et al.,	NDS 175, 1 (2021)	19-May-2021				

 $Q(\beta^{-})=1566.7\ 29$; $S(n)=5776\ 12$; $S(p)=5250\ 4$; $Q(\alpha)=6342\ 5$ 2021Wa16

S(2n)=10141 6, S(2p)=12912 18 (2021Wa16).

- Additional information 1. 1953Hy83: descendant of ²²⁷Ac. Assignment to ²¹⁹At based on chemical separation and on the genetic relationship to its α parent nucleus ²²³Fr. Measured half-life of decay of ²¹⁹At.
- 1989Bu09: ²¹⁹At activity was produced by spallation of 600-MeV protons on targets of ²³²Th. Assignment to ²¹⁹At based on mass separation and on identification of the daughter nucleus ²¹⁵Bi in the source. The disintegration rate was determined by measuring the β^- activity with a 4π plastic scintillator detector.
- 2015Fi07: ²¹⁹At activity from β^- decay of ²¹⁹Po produced in ²³⁸U(p,F),E=1.4 GeV from CERN synchrotron (PS) Booster. Target=ISOLDE UC_x. Pure laser-ionized beam of ²¹⁹Po is extracted from the reaction products using a Laser-Ion Source and Trap (LIST) system, which suppresses contamination from Francium activity by more than a factor of 1000. Measured $E\alpha$ and $I\alpha$ of ²¹⁹At activity, branching ratio for decay of ²¹⁹At.

Mass measurement: 2017Ma29: time-of-flight ion-cyclotron-resonance (ToF-ICR) technique using ISOLTRAP at ISOLDE-CERN. 2019Ba22: hyperfine structure measurements using in-source resonance ionization spectroscopy at CERN-ISOLDE. Deduced isotope

shift, change in mean square charge radius, magnetic dipole and electric quadrupole moments for the ground state. 2002Sh19: analyzed levels, α -decay data, hindrance factors.

Theoretical calculations: 15 primary references in the NSR database (www.nndc.bnl.gov/nsr) related to radioactivity. All data are from ²²³Fr α decay.

²¹⁹At Levels

Cross Reference (XREF) Flags

²²³Fr α decay (22.00 min)

E(level)	$J^{\pi \dagger}$	T _{1/2}	XREF	Comments			
0.0	(9/2 ⁻)	<u>- 1/2</u> 56 s 4		wα=93.6 10 (2015Fi07); %β ⁻ =6.4 10 μ=+3.502 70 (2019Ba22) Q=-1.17 64 (2019Ba22) %α determined by 2015Fi07 by comparing the intensities of 6228α (from ²¹⁹ At decay), and 6819α (from the decay of ²¹⁹ Rn β ⁻ daughter of ²¹⁹ At decay), together with Iα=79.4% 10 for the 6819α, taken from ²¹⁹ Rn α decay dataset in the ENSDF database (Sept 2013 update). %β ⁻ =100-%α. Other: %α≈97 (1953Hy83). Measured isotope shift δν(²¹⁹ At, ²⁰⁵ At)=-16580 MHz 120 (2019Ba22, hyperfine structure using in-source resonance ionization spectroscopy at CERN-ISOLDE). Measured change in nuclear mean-square charge radius $\delta < r^2 > (^{219}At,^{205}At)=+1.435 \text{ fm}^2$ 10(stat) 74(syst) (2019Ba22, hyperfine structure using in-source resonance ionization spectroscopy at CERN-ISOLDE). T _{1/2} : weighted average of 57 s 4 (1989Bu09) and 54 s 6 (1953Hy83). Based on measurements of charge radius and moments, 2019Ba22 suggest spherical configuration of πh _{9/2} or π9/2[505]h _{9/2} , with possible octupole collectivity. Other: 2001Li44 proposed configuration=πh ³ _{9/2} ⊗yg ⁻² _{9/2} . Measured Eα=6228 5 from the decay of ²¹⁹ At (2015Fi07). μ,Q: hyperfine structure using in-source resonance ionization spectroscopy at CERN-ISOLDE (2019Ba22).			
58.9 2	$(7/2^{-})$		A	Proposed configuration= $\pi(h_{9/2}^2f_{7/2})\otimes vg_{9/2}^{-2}$.			
150.9 2	$(5/2^{-})^{\ddagger}$		A	1.0p0000 com/garation(19/2-1/2)0.69/2.			
130.9 2	$(3/2)^{-1}$		n				

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

²¹⁹At Levels (continued)

E(level)	$J^{\pi \dagger}$	XREF
174 5	$(3/2^{-})^{\ddagger}$	A
296.2 4	$(3/2^{-})^{\ddagger}$	Α

[†] As assigned by 2001Li44 (also 2002Sh19) based on multipolarity assignments to gamma-ray transitions, and shell-model configurations in comparison with level structures of ²¹⁵At and ²¹⁷At.
[‡] Configuration may involve parts of seniority three protons, h³_{9/2} and h²_{9/2}f_{7/2}, as in ²¹⁵,²¹⁷At. For 174 and 296 levels, (3/2⁻) is also supported by low hindrance factors (<3) in ²²³Fr α decay from 3/2⁽⁻⁾ parent state.

E_i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}	$E_f J_f^{\pi}$	Mult.	δ	α^{\dagger}	$I_{(\gamma+ce)}$	Comments
58.9	(7/2-)	58.9 2	100	0.0 (9/2-)	M1		10.87 19		$ \begin{array}{c} \alpha(\text{L}) = 8.27 \ 15; \ \alpha(\text{M}) = 1.96 \ 4; \\ \alpha(\text{N}) = 0.508 \ 9; \ \alpha(\text{O}) = 0.1088 \ 19; \\ \alpha(\text{P}) = 0.0150 \ 3 \end{array} $
150.9	(5/2 ⁻)	150.9 2	100	0.0 (9/2 ⁻)	E2		1.417		α (K)=0.287; α (L)=0.836; α (M)=0.224; α (N)=0.0578; α (O)=0.01138; α (P)=0.001171
174	(3/2 ⁻)	(23 5)		150.9 (5/2 ⁻)				100	$I(\gamma+ce)$ given as the transition is expected to be heavily converted.
296.2	(3/2 ⁻)	145.3 3	100	150.9 (5/2 ⁻)	(M1(+E2))	<0.9	3.6 6		$\alpha(\mathbf{K})=2.69\ 69;\ \alpha(\mathbf{L})=0.69\ 9;\alpha(\mathbf{M})=0.17\ 3\alpha(\mathbf{N})=0.044\ 7;\ \alpha(\mathbf{O})=0.0092\ 13;\alpha(\mathbf{P})=0.00116\ 7$

[†] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

 $\gamma(^{219}\text{At})$

Adopted Levels, Gammas

Level Scheme Intensities: Relative photon branching from each level + 145,3 M (425) 100 5 γ Decay (Uncertain) ٠ (3/2-) 296.2 1.001 53 100 1 $\frac{(3/2^-)}{(5/2^-)}$ Ŷ <u>174</u> 150.9 00/14 080 + ¥ (7/2-) 58.9 0.0 56 s 4 (9/2-) ²¹⁹₈₅At₁₃₄