²²³Pa α decay (4.9 ms) 1970Bo13,1995AnZY,1999Ho28

]	History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh et al.,	NDS 175, 1 (2021)	19-May-2021

Parent: ²²³Pa: E=0; $J^{\pi}=(9/2^{-})$; $T_{1/2}=4.9$ ms 4; $Q(\alpha)=8327$ 6; % α decay=100.0

²²³Pa-T_{1/2}: From 1999Ho28 (α decay curve). Others: 7 ms *I* (2019Mi08, 27 (ER)- α correlated decay chains); 5 ms *I* (1995AnZY, 7.5 ms *I*5 in an earlier report 1993AnZS); 6.5 ms *I*0 (1970Bo13, α -decay). Value from 1999Ho28 is preferred as this has the highest statistics. Value from 2019Mi08 is based on only 27 events. In 1970Bo13, the α peaks from the decay of ²²³Pa seem statistically weak in spectral Figs. 10 and 16. Weighted average of all the five values is 5.3 ms 4.

²²³Pa-J^{π}: 2021Ko07 assign 9/2⁻ based on favored α decay to 9/2⁻ g.s. in ²¹⁹Ac. However, with HF=7.6 21, favored nature of α decay is not obvious, thus evaluators assign tentative (9/2⁻).

²²³Pa-Q(α): Deduced by evaluators from E α =8178 6 to the g.s. 2021Wa16 give 8340 60, larger uncertainty assigned if 8178 α feeds a level in 60-keV vicinity of the g.s.

²²³Pa-% α decay: % α =100 for ²²³Pa α decay.

1970Bo13: ²²³Pa activity produced in ²⁰⁵Tl(²²Ne,4n), ²⁰⁸Pb(¹⁹F,4n) and ²⁰⁹Bi(²⁰Ne, α 2n) reactions. Experiments were carried out using the heavy-ion beams from the Berkeley heavy-ion linear accelerator (HILAC). The reaction products were transported from the reaction cell by the helium-jet technique and their decay was measured with a semiconductor detector. Measured E α , I α , excitation functions, half-lives.

1993AnZS, 1995AnZY: activity produced by fusion reactions and separated using the electrostatic mass separator VASSILISSA. Measured Ea, Iα, T_{1/2}. Semi conductor detector was used.

2019Mi08: ²³³Pa produced in ¹⁸¹Ta(⁴⁸Ca, α 2n),E=212,226 MeV reaction followed by separation of products using SHIP separator at the UNILAC accelerator facility of GSI. The evaporation residues (ER) and α correlations were measured using DSSD detectors at the COMPASS decay spectroscopy station. Measured E α and half-life of ²²³Pa decay from (ER)- α_1 - α_2 - α_3 correlations in 27 decay chains: ²²³Pa \rightarrow ²¹⁹Ac \rightarrow ²¹⁵Fr.

²¹⁹Ac Levels

E(level)	J^{π}	T _{1/2}	Comments
0 169 8	9/2-	11.8 μs 15	J^{π} , $T_{1/2}$: from the Adopted Levels. E(level): from difference of E α to the g.s. and this level, corrected for recoil.

α radiations

$E\alpha^{\dagger}$	E(level)	$I\alpha^{\#}$	HF [‡]	Comments
8012 5	169	33 2	3.8 5	<i>Eα</i> : weighted average of 8006 keV <i>10</i> (1970Bo13), 8000 keV <i>15</i> (1995AnZY,1993AnZS), 8014 keV <i>5</i> (1999Ho28), and 8030 <i>40</i> (2019Mi08).
8178 6	0	67 2	5.9 6	Value from 1999H028. Others: 55% 5 (1970B013), 57% 5 (1995AnZ 1), are in disagreement. Value from 1999H028 is preferred due to high resolution of the α spectrum in their Fig. 2. E α : weighted average of 8196 keV 10 (1970B013), 8190 keV 15 (1995AnZY,1993AnZS),
				8172 keV 5 (1999Ho28), and 8220 40 (2019Mi08). I α : from 1999Ho28. Others: 43% 3 (1995AnZY), 45% 5 (1970Bo13) are in disagreement. Value from 1999Ho28 is preferred due to high resolution of the α spectrum in their Fig. 2.

[†] Original values from 1970Bo13 have been increased by 1 keV because of a change in the calibration energies of the ²¹⁵Po and ²¹²Po standard sources (1971Gr17,1977Ma31).

[±] Using $r_0(^{219}Ac)=1.5543$ 24, interpolation of $r_0(^{218}Ra)=1.5571$ 17 and $r_0(^{220}Th)=1.5514$ 30; values of r_0 taken from 2020Si16.

[#] Absolute intensity per 100 decays.