Adopted Levels, Gammas

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	Balraj Singh	ENSDF	10-Jun-2021				

 $Q(\beta^{-}) = -6283 \ 21$; $S(n) = 7910 \ 15$; $S(p) = 3625 \ 15$; $Q(\alpha) = 9849 \ 9$ 2021Wa16

Q(\varepsilon)=1520 60, S(2n)=14074 15, S(2p)=5503 13 (2021Wa16).

Additional information 1. ²¹⁸Th identified by 1973Hi06 in ²⁰⁹Bi(¹⁴N,5n) reaction and by 1973Ha32 in ²⁰⁶Pb(¹⁶O,4n), the two independent studies, 1973Hi06 published July 23, 1973, and 1973Ha32 on July 30, 1973.

Search for long-lived isomers: 2008La14 (no evidence found), 2007Ma57 (claimed evidence of presence of isomers).

Theory references: consult NSR database (www.nndc.bnl.gov/nsr/) for 64 primary references for calculations of half-lives of radioactive decays, and 23 for nuclear structure.

²¹⁸Th Levels

Cross Reference (XREF) Flags

 $^{222}\mathrm{U}~\alpha$ decay (4.7 $\mu\mathrm{s})$ A

В

 174 Yb(48 Ca,4n\gamma) 206 Pb(16 O,4n\gamma), 209 Bi(14 N,5n γ) С

E(level) [†]	J ^{π‡}	T _{1/2}	XREF	Comments
0.0#	0+	122 ns 5	ABC	%α=100
				Only the α decay has been observed. Theoretical partial T _{1/2} >100 s for ²¹⁸ Th $\varepsilon + \beta^+$ decay (2019Mo01) gives $\%\varepsilon + \%\beta^+ < 1.2 \times 10^{-7}$. T _{1/2} : from decay curve for g.s. to g.s. 9666 α . Weighted average (NRM) of 122 ns 8 (1973Ha32); 96 ns 7 (1973No09,1973Hi06); 125 ns 5 (1982Ch29); 0.16 μ s 4 (2015Kh09); and 169 ns +73-40 (2018Br13). Regular weighted average is 117 ns 7, with reduced χ^2 of 3.7 as compared to critical χ^2 =2.4. Weighted average is 125 ns 5 if the lowest value of 96 ns from 1973Hi06 is omitted.
				Configuration= $\pi(h_{9/2}^6 f_{7/2}^2) \otimes vg_{9/2}^2$ with 14% probability (2020Od01).
689.0 [#] 3	2+		BC	J^{π} : E2 γ to 0 ⁺ .
1078.0.6	(3^{-})		PC	Configuration= $\pi(h_{9/2}^{0}f_{7/2}^{2})\otimes vg_{9/2}^{2}$ with 25% probability (2020Od01).
1078.0 0	(3)		DC	I^{π} : $\Lambda I=(1) \gamma$ to 2^+ .
				Configuration= $\pi h_{0,2}^8 \otimes \nu(g_{0,2}^1 j_{1,5/2}^1)$ with 26% probability (2020Od01).
1192.3 [#] 5	4+		BC	J^{π} : E2 γ to 2 ⁺ .
				Configuration= $\pi(h_{0/2}^6 f_{7/2}^2) \otimes vg_{0/2}^2$ with 28% probability (2020Od01).
1560.8 [#] 6	6+		BC	J^{π} : E2 γ to 4 ⁺ , yrast band member.
				Configuration= $\pi(h_{9/2}^6 f_{7/2}^2) \otimes vg_{9/2}^2$ with 28% probability (2020Od01).
1761.7 [#] 7	8+	1.2 ns 2	BC	$T_{1/2}$: from ce(t) in (209) Bi $(^{14}N, 5n\gamma)$.
				J^{π} : E2 γ to 6 ⁺ , yrast band member.
				Configuration= $\pi(h_{9/2}^6 f_{7/2}^2) \otimes vg_{9/2}^2$ with 28% probability (2020Od01).
2099.5 [#] 9	10^{+}	0.25 ns 15	BC	$T_{1/2}$: from ce(t) in ²⁰⁹ Bi(¹⁴ N,5n γ).
				J^{π} : E2 γ to 8 ⁺ , yrast band member.
Ø				Configuration= $\pi(h_{9/2}^{0}f_{7/2}^{2})\otimes\nu(i_{11/2}^{1}g_{9/2}^{1})$ with 26% probability (2020Od01).
2272.6 ^{••} 10	(11^{-})		BC	$\begin{array}{c} \text{XREF: } C(?). \\ H^{T} \rightarrow L^{-}(1) = (-10^{+} - 1 - 1) \\ H^{T} \rightarrow L^{-}(1) = (-10^{+} - 1 - 1) \\ H^{T} \rightarrow L^{-}(1) = (-10^{+} - 1 - 1) \\ H^{T} \rightarrow L^{-}(1) \\ H^{\rightarrow$
				J [*] : $\Delta J = (1)$, (E1) γ to 10 ⁺ ; shell-model prediction (20200d01).
$2(0(2)^{0})$	(12-)		D.C	Configuration= $\pi_{1_{9/2}} \otimes v(g_{9/2}J_{15/2})$ with 52% probability (20200001).
2080.3 - 10	(13)		RC	AKEF: C(<i>i</i>). J^{π} : ΔJ=(2) γ to (11 ⁻); band member; shell-model prediction (2020Od01). Configuration= $\pi(h_{9/2}^6 i_{13/2}^2) \otimes \nu(g_{9/2}^1 j_{15/2}^1)$ with 31% probability (2020Od01).

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

²¹⁸Th Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	XREF	Comments
3160.0 [@] 12	(15 ⁻)	В	J^{π} : $\Delta J=(2) \gamma$ to (13 ⁻); band member; shell-model prediction (2020Od01).
3306.7 13	(16 ⁺)	В	Configuration= $\pi(h_{9/2}^6 i_{13/2}^2) \otimes v(g_{9/2}^1 j_{15/2}^1)$ with 37% probability (2020Od01). J ^{π} : $\Delta J=1$, (E1) transition to (15 ⁻); shell-model prediction (2020Od01). Configuration= $\pi(h_{9/2}^7 f_{1/2}^1) \otimes vg_{9/2}^2$ with 42% probability (2020Od01).

[†] From $E\gamma$ data.

[‡] In addition to the arguments given, the assignments are supported from shell-model calculations in 2020Od01.

[#] Band(A): Yrast (g.s.) band.

[@] Band(B): Band based on (11⁻).

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	Iγ	$E_f J_f^{\pi}$	Mult.	α &	Comments
689.0	2+	689.0 <i>3</i>	100	0.0 0+	E2 [‡]	0.0209	E_{γ} : 689.6 6 in (¹⁶ O,4n γ).
1078.0	(3 ⁻)	388.9 6	100	689.0 2+	(D) [#]		E_{γ} : 390.5 10 in (¹⁶ O,4n γ).
1192.3	4+	114.2 7	2.3 2	1078.0 (3-)	(D) [#]		E_{γ} : from (⁴⁸ Ca,4n γ) only.
		503.3 <i>3</i>	100.0 17	689.0 2+	E2 [‡]	0.0420	E_{γ} : 504.6 6 in (¹⁶ O,4n γ).
1560.8	6+	368.5 <i>3</i>	100	1192.3 4+	E2 [‡]	0.093	E_{γ} : 369.7 6 in (¹⁶ O,4n γ).
1761.7	8+	200.9 4	100	1560.8 6+	E2 [‡]	0.648 11	B(E2)(W.u.)=11 2
							E_{γ} : 201.9 6 in (¹⁶ O,4n γ).
2099.5	10^{+}	337.8 5	100	1761.7 8+	E2 [‡]	0.1187	B(E2)(W.u.)=6+9-2
					_		E_{γ} : 338.2 6 in (¹⁶ O,4n γ).
2272.6	(11 ⁻)	173.1 4	100	2099.5 10+	(E1) [@]	0.133 2	E_{γ} : 173.3 6 in (¹⁶ O,4n γ).
2686.3	(13 ⁻)	413.7 4	100	2272.6 (11 ⁻)	(Q) [#]		E_{γ} : 414.5 <i>10</i> in (¹⁶ O,4n γ).
3160.0	(15 ⁻)	473.7 5	100	2686.3 (13-)	(Q) [#]		E_{γ} : from (⁴⁸ Ca,n γ) only.
3306.7	(16 ⁺)	146.7 5	100	3160.0 (15 ⁻)	(E1) [@]	0.197 4	E_{γ} : from (⁴⁸ Ca,nγ). An unplaced 146.9 <i>6</i> γ was seen in (¹⁶ O,4nγ).

[†] From ¹⁷⁴Yb(⁴⁸Ca,4n γ). Values in ²⁰⁶Pb(¹⁶O,4n γ), ²⁰⁹Bi(¹⁴N,5n γ), listed under comments, seem consistently higher by about a keV.

[‡] From K/L ratios in ce data in ²⁰⁹Bi(¹⁴N,5n γ), supplemented by Δ J=2, quadrupole from γ -ray angular distributions in

¹⁷⁴Yb(⁴⁸Ca,4n γ), and by RUL for E2 and M2, when level half-lives are known. [#] From γ -ray angular distributions in ¹⁷⁴Yb(⁴⁸Ca,4n γ), with mult=(Q) and (D), most likely (E2) and (E1), respectively.

[@] From γ -ray angular distribution in ¹⁷⁴Yb(⁴⁸Ca,4n γ), and intensity balance arguments.

& Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

 $\gamma(^{218}\text{Th})$

Adopted Levels, Gammas

Level Scheme

Intensities: Relative photon branching from each level

 $^{218}_{90}{\rm Th}_{128}$

Adopted Levels, Gammas

