Adopted Levels

History Citation Literature Cutoff Date Author 10-Jun-2021 Full Evaluation Balraj Singh **ENSDF**

 $O(\beta^{-}) = -3245 \ 23$; $S(n) = 6476 \ 22$; $S(p) = 845 \ 21$; $O(\alpha) = 9791 \ 12$

 $Q(\varepsilon)=6283\ 21$, $S(2n)=15320\ 30$, $S(2p)=4078\ 20$, $Q(\varepsilon p)=2658\ 21$ (2021Wa16).

Additional information 1. 1979Sc09: ²¹⁸Pa produced and identified in ¹⁸¹Ta(⁴⁰Ar,xn) reaction, measured excitation function.

2000He17 (also 1996An21): 170 Er(50 Ti,X),E=150-211 MeV; measured $T_{1/2}$.

1999Bo52: measured yield in ¹⁹⁷Au(²⁶Mg,X),E<164 MeV.

2001Ni06: measured yield in Ce(82Se,X).

2005Li17: measured yield in ⁹Be(²³⁸U,X).

2020Zh01: ²¹⁸Pa produced and identified in ¹⁸²W(⁴⁰Ar,p3n), E(⁴⁰Ar)=190 MeV using the Sector-Focusing cyclotron facility at HIRFL-Lanzhou. The evaporation residues (ERs) were separated from the incident beam particles using gas-filled recoil separator for heavy ions (SHANS). Measured E α , (residues) $\alpha_1\alpha_2$ correlations, where α_1 is from parent nucleus and α_2 from daughter nucleus, and half-life. The residues and α particles were detected using multiwire proportional gas counter (MWPC) and position-sensitive silicon strip detectors (PSSDs). The α particles escaping the PSSD in the backward direction were collected by a system of eight silicon detectors. Energy resolution (FWHM) for α particles was 35 keV for E α =6-9 MeV. The γ rays were detected in coincidence mode with α particles and recoils using a Ge Clover-detector and two HPGe detectors. According to Fig. 1b showing (recoil) α -coin spectrum, a large number of recoil- α correlated chains were observed, which were assigned to the decay of 218 Pa g.s. In addition, an isomeric state in 218 Pa was also discovered, consistent with systematics of α decays for odd-proton N=127 isotones, and with shell-model calculations.

Theory references: consult NSR database (www.nndc.bnl.gov/nsr/) for ten primary references for calculations of half-lives of radioactive decays, and two for nuclear structure.

²¹⁸Pa Levels

E(level)	$J^{\pi^{\ddagger}}$	T _{1/2}	Comments
0	(8-)	109 μs 5	$\%\alpha$ =100
		·	Only the α decay has been observed, with E α =9610 14 and 9524 16 (2020Zh01); 9616 15 and 9544 15 (2000He17); and 9614 20 and 9535 15 (1979Sc09). Theoretical partial $T_{1/2}$ =57.4 s for 218 Pa ε + β ⁺ decay (2019Mo01) gives $\%\varepsilon$ + $\%\beta$ ⁺ =2×10 ⁻⁴ .
			The α decay feeds the (5 ⁺) g.s. and a (4 ⁺) excited state at 92 keV in ²¹⁴ Ac, as proposed in 1979Sc09.
			$T_{1/2}$: weighted average of 107 μ s 5 (2020Zh01), 113 μ s 10 (2000He17) and 0.12 ms +4-2 (1979Sc09).
82 21	(1^{-})	135 μ s +62-32	$\%\alpha$ =100
			Only the α decay has been observed, with E α =9691 15 and tentative 9596 21 (2020Zh01).
			The α decay feeds the (5 ⁺) g.s. and a (4 ⁺) excited state at 92 keV in ²¹⁴ Ac, proposed by 2020Zh01.
			E(level): deduced by evaluator from differences $E\alpha$ values of 9610 14 from the g.s. to g.s. of 214 Ac and 9691 15 from the isomer to g.s. of 214 Ac, as given in 2020 Zh01, and each corrected for recoil. 2020 Zh01 give E(level)=83 6.
			$T_{1/2}$: from 2020Zh01, deduced from nine (implants)- $\alpha 1 - \alpha 2$ correlated decay chains).

[†] Assigned by 2020Zh01, based on the systematics of α decays of odd-proton, N=127 isotones of 212 At, 214 Fr and 216 Ac, with further support from shell-model calculations.