²²²Ac α decay (4.9 s) 1982Bo04,1972Es03,1964Mc21

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balrai Singh, M. S. Basunia, Murray Martin et al.	NDS 160, 405 (2019)	30-Oct-2019

Parent: ²²²Ac: E=0.0; $J^{\pi}=1^-$; $T_{1/2}=4.9$ s 5; $Q(\alpha)=7137.4$ 20; % α decay=99 1

²²²Ac-J^{π}: From ²²²Ac Adopted Levels in the ENSDF database (March 2011 update).

 222 Ac-T_{1/2}: Weighted average of 5 s *1* (1972Es03), 4.2 s 5 (1958To25) and 5.5 s 5 (1952Me13). Value is 5.0 s 5 in 222 Ac

Adopted Levels in the ENSDF database.

²²²Ac- $Q(\alpha)$: From 2017Wa10.

²²²Ac- $\%\alpha$ decay: $\%\alpha$ =99 *I*. Possible ε branching was estimated by 1966Wa23 as 1-2% from I α (7.13-MeV α) of ²¹⁸Rn shown in ²²²Ac α spectrum by 1964Mc21. Theoretical partial T_{1/2}>100 s for ²²²Ac $\varepsilon + \beta^+$ decay (2019Mo01) gives ($\%\varepsilon + \%\beta^+$)<5.

1982Bo04: measured $E\alpha$.

1972Es03: measured E α , I α , half-life of decays of ²²²Ac and ²¹⁸Fr. Deduced hindrance factors.

1964Mc21: measured $E\alpha$, $I\alpha$.

Other: 1991Ga28: $\alpha \alpha$ correlations from successive α decays.

²¹⁸Fr Levels

E(level)	J^{π}	T _{1/2}	Comments	
0 46 <i>11</i>	1-	1.1 ms +5-4	$J^{\pi}, T_{1/2}$: from the Adopted Levels.	

α radiations

Εα	E(level)	$I\alpha^{\dagger \#}$	HF^{\ddagger}	Comments
6963 10	46	6 1	35 7	Eα: from 1964Mc21. Original energy has been increased by 11 keV, as recommended by 1991Ry01.
7008.6 20	0	94 1	3.2 4	Eα: recommended by 1991Ry01 from energies measured by 1982Bo04, 1972Es03 and 1964Mc21. The original energies were changed because of changes in calibration energies used. The original energies and the changes (+ for increased energies, and – for decreased Eα) are 7013 2 (-4.4) (1982Bo04), 7010 20 (+1.4) (1972Es03), 6998 (-1.6) (1964Mc21). Others: 1988Hu08, 1968Ha14, 1958To25, 1951Me10.

[†] α intensity per 100 α decays. These I α data are the values recommended by 1991Ry01 from I α measured by 1964Mc21.

[‡] The nuclear radius parameter $r_0(^{218}Fr)=1.5497$ 30 is deduced from interpolation (or unweighted average) of radius parameters of the adjacent even-even nuclides.

[#] For absolute intensity per 100 decays, multiply by 0.99 1.