Adopted Levels

History

	History					
Туре	Author	Citation	Literature Cutoff Date			
Full Evaluation	Balraj Singh, M. S. Basunia, Murray Martin et al.,	NDS 160, 405 (2019)	30-Oct-2019			
$Q(\beta^{-})=4859\ 27;\ S(n)=3590\ 30;\ S(p)=6310\ SY;\ Q(\alpha)=4330\ SY$ 2017Wa10						
Estimated uncertainties (2017Wa10): 300 for S(p), 200 for Q(α).						
S(2n)=8801 29, S(2p)=16080	1 300 (syst) (2017Wa10).					
Additional information 1.	228					
1998Pf02: ²¹⁸ Bi nuclide produced and identified in ⁹ Be(²³⁸ U,X) reaction at $E(^{238}U)=1$ GeV/nucleon.						
2004De16, 2004Fr14 (also 20	04DeZV thesis): ²¹⁸ Bi nuclide produced in spallation	reaction with a 1.4-GeV	proton beam on a			
uranium carbide target at	ISOLDE facility.					
2010Al24 (also 2009Al32): ²	¹⁸ Bi nuclide identified in ⁹ Be(²³⁸ U,X),E=1 GeV/nucle	on, beam produced by th	e SIS synchrotron at			
GSI facility. The fragmen	it residues were analyzed with the high resolving powe	er magnetic spectrometer	Fragment separator (FRS).			
2012Be28: ²¹⁸ Bi was produce	ed in projectile fragmentation of ²³⁸ U at 1 GeV/nucleo	on beam provided by the	UNILAC-SIS			
accelerator at GSI with a	n intensity of 1.5×10^9 ions/spill (a repetition of 3 s and	d an extraction time of 1	s), bombarding a ⁹ Be			
target. Reaction products	were separated and identified in the magnetic spectron	neter Fragment Separator	(FRS), and implanted in a			
composite DSSSD detector system comprising three layers, each with three DSSSD pads with 16x16 pixels. The DSSSD detectors						
were surrounded by the RISING γ -ray spectrometer array of 105 Ge crystals arranged in 15 clusters. Measured γ , $\beta\gamma(t)$ in						
coincidence with implant	ed recoils. A total of 6678 implanted ²¹⁸ Bi ions were of	detected.				
2014Mo02, 2014Mo15: ²¹⁸ B	i was produced in projectile fragmentation of 1 GeV/n	ucleon ²³⁸ U beam from	UNILAC-SIS			
accelerator at GSI, bomba	arding a ⁹ Be target. The reaction products were separa	ted and identified in the	magnetic spectrometer			
Fragment Separator (FRS), based on $B\rho$ - ΔE - $B\rho$ scheme.					
2017Ca12, 2016Ca25 (also 2	014Ca23): ²¹⁸ Bi produced in fragmentation of 1 GeV/	nucleon ²³⁸ U beam from	SIS-18 synchrotron at			
GSI on a ⁹ Be target of 1.	6 g/cm ² thickness. Reaction products were separated a	nd identified by GSI Fra	gment Separator (FRS)			
using $B\rho$ - ΔE - $B\rho$ techniqu	e. The FRS tracking detectors were four time-projection	on chambers (TPCs), two	ionization chambers, and			
thin plastic scintillators for	or tof measurement. Mass-over-charge (A/Q) ratios were	re measured for ions ana	lyzed on an event-by-event			
basis. Finally selected ions of interest were implanted into a stack of double-sided silicon strip detectors SIMBA, which also						
detected β -decay events. Comparison with theoretical calculations using FRDM+QRPA, DF3+cQRPA KTUY and RHB+RQRPA						
models. (cQRPA=continu	um quasi-random-phase approximation; FRDM=finite-	-range droplet model; D	F3=density functional theory;			
RHB=relativistic Hartree	RHB=relativistic Hartree-Bogoliubov; RQRPA=relativistic QRPA; KTUV=Koura-Tachibana-Uno-Yamada model).					
Mass measurement: 2012Ch1	9 (also 2008ChZI thesis).					
(T) ())		C C 1 1	C1 1C11 C			

Theory references: consult NSR database (www.nndc.bnl.gov/nsr/) for six primary references for calculations of half-lives of radioactive decays.

²¹⁸Bi Levels

E(level)	J^{π}	T _{1/2}	Comments		
0	(6 ⁻ ,7 ⁻ ,8 ⁻)	33 s 1	 %β⁻=100 T_{1/2}: from time scaling measurement of γ rays (2004De16). Others: 36 s 14 (2012Be28, βγ-coin decay curve by summing time spectra for 262-, 385- and 425-keV transitions); 38.5 s 216 (2017Ca12, rounded to 38 s 22 in 2016Ca25; (ion)β correlated decay curve and analyzed by maximum-likelihood method). E(level): the 33-s activity is assumed as the ground state, probably with J≥6 since it possibly feeds (4⁺), (6⁺) and (8⁺) states in ²¹⁸Po. 2004De16 state that there is no evidence for a low-spin isomeric state. J^π: from the observed direct β-feedings to the (6⁺) and (8⁺) levels of ²¹⁸Po, and expected coupling of πh_{9/2} orbital with vg_{9/2} and/or other positive-parity neutron orbitals . Shell-model calculation by 2004De16, with the consideration of πh_{9/2}, vg_{9/2}, and vi_{11/2} multiplets, predicted 8⁻ as the ground state, with the 7⁻ and 6⁻ states lying only ≈40 keV above the g.s. For Z=83 isotopes, g.s. J^π values are 9/2⁻ or (9/2⁻) for odd-A from A=209 to 217, suggesting h_{9/2} proton orbital in the g.s. configuration for ²¹⁸Bi. For N=13 isotones, g.s. J^π=(9/2⁺) for ²¹⁹Po, 7/2⁺ for ²²¹Rn, 3/2⁺ for ²²³Ra and (3/2⁺) for ²²⁵Th do not suggest a single neutron orbital for g.s. of ²¹⁸Bi. 		