## **Adopted Levels, Gammas**

|                 | History                                            |                    |                        |
|-----------------|----------------------------------------------------|--------------------|------------------------|
| Туре            | Author                                             | Citation           | Literature Cutoff Date |
| Full Evaluation | Balraj Singh, M. S. Basunia, Murray Martin et al., | NDS 160,405 (2019) | 30-Oct-2019            |

 $Q(\beta^{-})=-1520\ 50;\ S(n)=5930\ 50;\ S(p)=2340\ 50;\ Q(\alpha)=9380\ 50$ 2017Wa10

S(2n)=13440 50, S(2p)=6710 50 (2017Wa10).

Additional information 1. Assignment: daughter of <sup>222</sup>Pa  $\alpha$  decay (1970Bo13).

Theory references: consult NSR database (www.nndc.bnl.gov/nsr/) for 15 primary references for calculations of half-lives of radioactive decays, and two for nuclear structure.

Review of level data for nuclides with reflection asymmetry: 1996Bu45.

## <sup>218</sup>Ac Levels

Cross Reference (XREF) Flags

<sup>222</sup>Pa  $\alpha$  decay (4.1 ms) <sup>209</sup>Bi(<sup>12</sup>C,3n $\gamma$ ) A

В

| E(level) <sup>†</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $J^{\pi \ddagger}$ | T <sub>1/2</sub> | XREF | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (1 <sup>-</sup> )  | 1.03 μs 5        |      | %α=100<br>E(level): From <sup>218</sup> Ac α decay. Only the α-decay mode has been observed.<br>Theoretical partial T <sub>1/2</sub> =13.1 s for <sup>218</sup> Ac ε+β <sup>+</sup> decay (2019Mo01) gives<br>$%ε+%β^+=8×10^{-6}$ .<br>J <sup>π</sup> : from the systematics of odd-odd nuclides in this mass region, the probable<br>configuration is πh <sub>9/2</sub> ⊗vg <sub>9/2</sub> , as proposed in <sup>209</sup> Bi( <sup>12</sup> C,3nγ).<br>T <sub>1/2</sub> : from α decay. Weighted average of 0.98 μs 12 (2017Su18), 0.96 μs 5<br>(2015Kh09), 1.06 μs 9 (1989Mi17), 1.31 μs 12 (1989De06) and 1.12 μs 11<br>(1983Sc23). Others: 1.8 μs 1 (2019Mi08, from correlated α decays in <sup>226</sup> Np<br>and <sup>222</sup> Pa decay chains, authors also give T <sub>1/2</sub> =1.5 μs 1); 0.27 μs 4<br>(1970Bo13) seem discrepant values. Note that statistics is poor in 2019Mi08.                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0+x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                  | В    | E(level): see comment for $\approx 407 - \text{keV}$ level.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $122.3 \pm x = 122.5 \pm x = 122.$ | $(0^{-})$          | 22               | D    | E(level). See comment for $\approx 329 - \text{KeV}$ level.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 122.3+y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (9)                | 32 118 9         | В    | <ul> <li>Additional information 2.</li> <li>E(level): y=x+z, where z is expected to be less than 100 keV.</li> <li>J<sup>π</sup>: from the systematics of neighboring odd-odd nuclides, probable configuration=πh<sub>9/2</sub>⊗vg<sub>9/2</sub>.</li> <li>T<sub>1/2</sub>: from delayed component in (122.5γ)(total γ)(t) curve (1994De04).</li> <li>1994De04 noted that mult(122.5γ)=M1 would give a much shorter half-life for 122.5+x level, and suggested one or more intermediate transitions of &lt;100 keV from the (9<sup>-</sup>) state to the 122.5+x level. 1994De04 also pointed out contribution from a prompt component in the (122.5γ)(total γ)(t) distribution, which may suggest population of the 122.5+x level by γ rays from higher levels of short half-lives. Half-life of 32 ns is assigned by the evaluators to the 122.5+y, (9<sup>-</sup>) level, while noting that 1994De04 did not explicitly assign this half-life to the (9<sup>-</sup>) or any other level, either in their level-scheme Fig. 2 or in the text of their paper. Occurrence of (1<sup>-</sup>) ground states and (9<sup>-</sup>) isomers in <sup>216</sup>Ac; and also in N=129 isotones <sup>214</sup>At and possibly in <sup>212</sup>Bi seem to support the assignment of (9<sup>-</sup>) isomer in <sup>218</sup>Ac.</li> </ul> |
| ≈193                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (0-)               |                  | A    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 226.90+y 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (9 <sup>-</sup> )  |                  | B    | J <sup>*</sup> : $\Delta J=1$ , 189.2 M1 $\gamma$ from 416.1+y (10 <sup>-</sup> ) level.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ~407<br>416.10+y <i>14</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (10 <sup>-</sup> ) |                  | B    | $J^{\pi}$ : $\Delta J=1$ , 293.6 (M1) $\gamma$ to 122.5+y, (9 <sup>-</sup> ) level; probable<br>configuration=( $\pi h_{9/2} \otimes v i_{11/2}$ )10 <sup>-</sup> $\otimes$ 0 <sup>+</sup> core.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

### Adopted Levels, Gammas (continued)

### <sup>218</sup>Ac Levels (continued)

| E(level) <sup>†</sup>         | $J^{\pi \ddagger}$ | T <sub>1/2</sub> | XREF | Comments                                                                                                                                                          |
|-------------------------------|--------------------|------------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 506.99+y <sup>b</sup> 13      | (11 <sup>+</sup> ) | 103 ns 11        | В    | %IT=100                                                                                                                                                           |
|                               |                    |                  |      | J <sup><math>\pi</math></sup> : M2 $\gamma$ to (9 <sup>-</sup> ); (E1) $\gamma$ to (10 <sup>-</sup> ); possible bandhead.                                         |
|                               |                    |                  |      | $T_{1/2}$ : 384.5 $\gamma$ (t) in <sup>209</sup> Bi( <sup>12</sup> C,3n $\gamma$ ).                                                                               |
| ≈529                          |                    |                  | A    | E(level): this level may correspond to 122.5+x level from $^{209}Bi(^{12}C,3n\gamma)$                                                                             |
| ≈560                          |                    |                  | Δ    | reaction which deexcites by $122.5\gamma$ .                                                                                                                       |
| ≈580                          |                    |                  | A    |                                                                                                                                                                   |
| 600.94+y <i>16</i>            | (10 <sup>-</sup> ) |                  | В    | J <sup><math>\pi</math></sup> : $\Delta$ J=1, M1 $\gamma$ to (9 <sup>-</sup> ). Possible configuration= $(\pi h_{9/2} \nu g_{9/2}) 8^- \otimes 2^+$ (unfavored).  |
|                               |                    |                  |      | E(level): the ordering of the 81-478 cascade is not established experimentally, the ordering given here is preferred by 1994De04 from theoretical considerations. |
| 630 38+v <sup>#</sup> 14      | $(11^{-})$         |                  | В    | $I^{\pi} \cdot \Lambda I = 2$ , E2 $\gamma$ to (9 <sup>-</sup> )                                                                                                  |
| $681.98 + y^a 14$             | $(11^+)$           |                  | B    | $J^{\pi}$ : $\Delta J=1$ , E1 $\gamma$ to (10 <sup>-</sup> ); $\Delta J=0$ , M1 $\gamma$ to (11 <sup>+</sup> ).                                                   |
| 789.16+y <sup>@</sup> 15      | (12 <sup>+</sup> ) |                  | В    | $J^{\pi}$ : $\Delta J=1$ , E1 $\gamma$ to (11 <sup>-</sup> ); $\Delta J=1$ , M1 $\gamma$ to (11 <sup>+</sup> ).                                                   |
| 990.45+y& 15                  | $(12^{-})$         |                  | В    | $J^{\pi}$ : $\Delta J=2$ , E2 $\gamma$ to (10 <sup>-</sup> ); $\Delta J=1 \gamma$ to (11 <sup>+</sup> ).                                                          |
| 1044.89+y <sup>b</sup> 17     | (13 <sup>+</sup> ) |                  | В    | $J^{\pi}$ : $\Delta J=2$ , E2 $\gamma$ to (11 <sup>+</sup> ).                                                                                                     |
| 1088.50+y <sup>#</sup> 17     | (13 <sup>-</sup> ) |                  | В    | $J^{\pi}$ : $\Delta J=2 \gamma$ to (11 <sup>-</sup> ); $\Delta J=1$ , E1 $\gamma$ to (12 <sup>+</sup> ).                                                          |
| 1181.93+y <sup>a</sup> 17     | (13 <sup>+</sup> ) |                  | В    | $J^{\pi}$ : ΔJ=2, E2 γ to (11 <sup>+</sup> ); (E1) γ to (12 <sup>-</sup> ).                                                                                       |
| 1258.07+y <sup>@</sup> 19     | $(14^{+})$         |                  | В    | J <sup>π</sup> : $\Delta$ J=2 γ to (12 <sup>+</sup> ); $\Delta$ J=1, E1 γ to (13 <sup>-</sup> ).                                                                  |
| 1335.86+y <sup>c</sup> 22     | (14 <sup>-</sup> ) |                  | В    | $J^{\pi}$ : $\Delta J=1 \gamma$ to (13 <sup>+</sup> ).                                                                                                            |
| 1418.54+y <sup>&amp;</sup> 17 | (14 <sup>-</sup> ) |                  | В    | $J^{\pi}$ : ΔJ=2 γ to (12 <sup>-</sup> ); ΔJ=1, M1 γ to (13 <sup>-</sup> ).                                                                                       |
| 1509.83+y <sup>b</sup> 19     | $(15^{+})$         |                  | В    | $J^{\pi}$ : ΔJ=2, E2 γ to (13 <sup>+</sup> ); ΔJ=1, (E1) γ to (14 <sup>-</sup> ).                                                                                 |
| 1557.23+y <sup>#</sup> 19     | (15 <sup>-</sup> ) |                  | В    | $J^{\pi}$ : $\Delta J=2 \gamma$ to (13 <sup>-</sup> ); $\Delta J=1$ , E1 $\gamma$ to (14 <sup>+</sup> ).                                                          |
| 1625.41+y <sup>a</sup> 19     | $(15^{+})$         |                  | В    | J <sup>π</sup> : ΔJ=2, E2 γ to (13 <sup>+</sup> ); ΔJ=1, (E1) γ to (14 <sup>-</sup> ).                                                                            |
| 1697.60+y <sup>@</sup> 23     | (16 <sup>+</sup> ) |                  | В    | J <sup>π</sup> : $\Delta$ J=2, E2 γ to (14 <sup>+</sup> ); $\Delta$ J=1, E1 γ to (15 <sup>-</sup> ).                                                              |
| 1789.45+y <sup>&amp;</sup> 19 | (16 <sup>-</sup> ) |                  | В    | $J^{\pi}$ : $\Delta J=2$ , E2 $\gamma$ to (14 <sup>-</sup> ); $\Delta J=1$ , M1 $\gamma$ to (15 <sup>-</sup> ).                                                   |
| 1843.1+y <sup>c</sup> 3       | (16 <sup>-</sup> ) |                  | В    | $J^{\pi}$ : $\Delta J=1 \gamma$ to (15 <sup>+</sup> );                                                                                                            |
| 1939.4+y <sup>b</sup> 3       | $(17^{+})$         |                  | В    | $J^{\pi}$ : $\Delta J=2 \gamma$ to (15 <sup>+</sup> ); (E1) $\gamma$ to (16 <sup>-</sup> ).                                                                       |
| 1990.2+y 3                    | $(17^{+})$         |                  | В    | $J^{\pi}$ : $\Delta J=1$ , E1 $\gamma$ to (16 <sup>-</sup> ).                                                                                                     |
| $2025.8 + y^a 3$              | $(17^{+})$         |                  | В    | $J^{\pi}$ : $\Delta J=2 \gamma$ to (15 <sup>+</sup> ); possible $\gamma$ to (16 <sup>-</sup> ).                                                                   |
| 2121.0+y <sup>c</sup> 4       | (18 <sup>-</sup> ) |                  | В    | $J^{n}$ : $\gamma$ to (16 <sup>-</sup> ); possible $\gamma$ to (17 <sup>+</sup> ).                                                                                |
| 2141.0+y <sup>w</sup> 3       | $(18^{+})$         |                  | В    | $J^{\pi}$ : $\Delta J=2 \gamma$ to (16 <sup>+</sup> ).                                                                                                            |
| 2239.6+y <sup>b</sup> 4       | (19 <sup>+</sup> ) |                  | В    | $J^{\pi}$ : $\Delta J=2 \gamma$ to (17 <sup>+</sup> ).                                                                                                            |
| 2630.2+y <sup>@</sup> 4       | $(20^{+})$         |                  | В    | $J^{\pi}: \Delta J = (2) \gamma \text{ to } (18^+).$                                                                                                              |

<sup>†</sup> From least-squares fit to  $E\gamma$  data.

<sup>‡</sup> All assignments are made from the  $\gamma$ -ray multipolarities, E1, E2, M1 branching ratios, and shell-model considerations and band associations. For high-spin (J>10) levels, ascending order of spins with excitation energy is assumed.

- <sup>#</sup> Band(A): Band based on (9<sup>-</sup>), s=+1. Configuration= $(\pi h_{9/2} \otimes vg_{9/2}) \otimes (0^+, 2^+, ... \text{core})$ .
- <sup>@</sup> Band(a): Band based on (12<sup>+</sup>), s=+1. Configuration= $(\pi h_{9/2} \otimes \nu g_{9/2}) \otimes (3^-, 5^-, ... \text{core})$ .
- & Band(B): Band based on (12<sup>-</sup>), s=-1. Configuration= $(\pi h_{9/2} \otimes v i_{11/2}) \otimes (0^+, 2^+, ... \text{core})$ .
- <sup>*a*</sup> Band(b): Band based on (11<sup>+</sup>), s=-1. Configuration= $(\pi h_{9/2} \otimes v_{11/2}) \otimes (3^-, 5^-, ... \text{core})$ .
- <sup>b</sup> Band(C): Band based on (11<sup>+</sup>), s=-1. Configuration= $(\pi i_{13/2} \otimes \nu g_{9/2}) \otimes (0^+, 2^+, ... \text{core})$ .
- <sup>c</sup> Band(c): Band based on (14<sup>-</sup>), s=-1. Configuration= $(\pi i_{13/2} \otimes \nu g_{9/2}) \otimes (3^-, 5^-, ... \text{core})$ .

### Adopted Levels, Gammas (continued)

# $\gamma$ (<sup>218</sup>Ac)

| E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $E_{\gamma}^{\dagger}$                   | $I_{\gamma}^{\dagger}$                         | $E_f$                               | $\mathbf{J}_{f}^{\pi}$                               | Mult. <sup>†</sup>    | $\alpha^{\ddagger}$               | Comments                                                                                    |
|------------------------|----------------------|------------------------------------------|------------------------------------------------|-------------------------------------|------------------------------------------------------|-----------------------|-----------------------------------|---------------------------------------------------------------------------------------------|
| 122.5+x<br>122.5+y     | (9-)                 | 122.5 2<br>(z)                           | 100                                            | 0+x<br>122.5+x                      |                                                      | M1                    | 9.56                              | $E_{\gamma}$ : z corresponds to either one or more gamma rays, with energy of <100 keV.     |
| 416.10+y               | (10 <sup>-</sup> )   | 189.2 2                                  | 100 9                                          | 226.90+y                            | $(9^{-})$                                            | M1                    | 2.79                              |                                                                                             |
| 506.99+y               | (11 <sup>+</sup> )   | 293.6 2<br>91.0 2<br>384 5 2             | 24 3<br>85.3 24<br>100 0 14                    | 122.5+y<br>416.10+y<br>122.5+y      | $(9^{-})$<br>$(10^{-})$                              | (M1)<br>(E1)<br>M2    | 0.820<br>0.1461 23                | $B(E1)(W.u.)=6.5\times10^{-7} 8$<br>B(M2)(W.u.)=0.31 4                                      |
| 600.94+v               | $(10^{-})$           | 478.5 2                                  | 100.0 14                                       | 122.5 + y<br>122.5 + y              | $(9^{-})$                                            | M12<br>M1             | 0.217                             | D(112)(11.1)=0.51 4                                                                         |
| 630.38+y               | (11 <sup>-</sup> )   | 507.8 2                                  | 100                                            | 122.5+y                             | (9-)                                                 | E2                    | 0.0392                            |                                                                                             |
| 681.98+y               | (11 <sup>+</sup> )   | 81.1 2<br>175.0 2<br>265 8 2             | 24 <i>10</i><br>26 <i>10</i><br>100 <i>14</i>  | 600.94+y<br>506.99+y<br>416.10+y    | $(10^{-})$<br>$(11^{+})$<br>$(10^{-})$               | (E1)<br>M1<br>F1      | 0.198<br>3.48<br>0.0476           |                                                                                             |
| 789.16+y               | (12 <sup>+</sup> )   | 107.0 2<br>158.8 2<br>282.3 2            | 7.8 22<br>100 <i>13</i><br>15 <i>4</i>         | 681.98+y<br>630.38+y<br>506.99+y    | $(10^{-})$<br>$(11^{+})$<br>$(11^{-})$<br>$(11^{+})$ | (M1+E2)<br>E1<br>M1   | 0.1601<br>0.914                   |                                                                                             |
| 990.45+y               | (12 <sup>-</sup> )   | 308.5 2<br>360.0 2<br>574 3 2            | 13.8 25<br>2.9 10                              | 681.98+y<br>630.38+y<br>416.10+y    | $(11^+)$<br>$(11^+)$<br>$(11^-)$<br>$(10^-)$         | D<br>[M1]<br>F2       | 0.469                             |                                                                                             |
| 1044.89+v              | $(13^{+})$           | 537.9 2                                  | 100 0                                          | 506.99 + v                          | $(10^{-})$<br>$(11^{+})$                             | E2                    | 0.0342                            |                                                                                             |
| 1088.50+y              | (13 <sup>-</sup> )   | 299.3 2<br>458.1 2                       | 100 <i>10</i><br>50 <i>4</i>                   | 789.16+y<br>630.38+y                | $(12^+)$<br>$(11^-)$                                 | E1<br>Q               | 0.0364                            |                                                                                             |
| 1181.93+y              | (13 <sup>+</sup> )   | 137.0 2<br>191.4 2<br>500 1 2            | 3.3 9<br>74 8<br>100 7                         | 1044.89+y<br>990.45+y<br>681.98+y   | $(13^+)$<br>$(12^-)$<br>$(11^+)$                     | [M1+E2]<br>(E1)<br>E2 | 4.8 22<br>0.1024<br>0.0406        |                                                                                             |
| 1258.07+y              | (14+)                | 169.5 2<br>468.9 2                       | 64 <i>4</i><br>100 <i>11</i>                   | 1088.50+y<br>789.16+y               | $(13^{-})$<br>$(12^{+})$                             | E1<br>Q               | 0.1369                            |                                                                                             |
| 1335.86+y              | $(14^{-})$           | 291.0 2                                  | 100                                            | 1044.89+y                           | (13+)                                                | Ď                     |                                   |                                                                                             |
| 1418.54+y              | (14 <sup>-</sup> )   | 236.6 2<br>330.1 2<br>373.5 2            | 76 5<br>35 4<br>8 3                            | 1181.93+y<br>1088.50+y<br>1044.89+y | $(13^+)$<br>$(13^-)$<br>$(13^+)$<br>$(12^-)$         | E1<br>M1<br>D         | 0.0622<br>0.595                   |                                                                                             |
| 1509.83+y              | (15+)                | 428.1 2<br>174.0 2<br>465 1 2            | 25 5<br>100 6                                  | 1335.86+y<br>1044.89+y              | (12)<br>$(14^{-})$<br>$(13^{+})$                     | Q<br>(E1)<br>F2       | 0.1286                            |                                                                                             |
| 1557.23+y              | (15 <sup>-</sup> )   | 299.1 2<br>468.7 2                       | 100 <i>0</i><br>100 <i>10</i><br>36 5          | 1258.07+y<br>1088.50+y              | $(13^{-})$<br>$(14^{+})$<br>$(13^{-})$               | E1<br>O               | 0.0364                            |                                                                                             |
| 1625.41+y              | (15+)                | 115.6 2<br>206.8 2<br>443 5 2            | 6.5 <i>32</i><br>90 <i>12</i><br>100 <i>14</i> | 1509.83+y<br>1418.54+y<br>1181.93+y | $(15^+)$<br>$(14^-)$<br>$(13^+)$                     | [M1+E2]<br>(E1)<br>F2 | 8.4 <i>29</i><br>0.0853<br>0.0544 |                                                                                             |
| 1697.60+y              | (16+)                | 140.4 2<br>439.5 2                       | 45 <i>4</i><br>100 <i>6</i>                    | 1557.23+y<br>1258.07+y              | $(15^{-})$<br>$(15^{-})$<br>$(14^{+})$               | E1<br>E2              | 0.215                             |                                                                                             |
| 1789.45+y              | (16 <sup>-</sup> )   | 164.0 2<br>232.1 2<br>279.8 2            | 12.7 <i>10</i><br>15.3 <i>13</i><br>100        | 1625.41+y<br>1557.23+y<br>1509.83+y | $(15^+)$<br>$(15^-)$<br>$(15^+)$<br>$(14^-)$         | E1<br>M1<br>(E1)      | 0.1482<br>1.574<br>0.0423         |                                                                                             |
| 1843.1+y               | (16 <sup>-</sup> )   | 370.9 2<br>333.2 2<br>507.0 <sup>#</sup> | 100 9                                          | 1418.54+y<br>1509.83+y<br>1335.86+y | $(14^{-})$<br>$(15^{+})$<br>$(14^{-})$               | D                     | 0.0808                            | $E_{\gamma}$ : this $\gamma$ is expected but not seen with certainty probably because it is |
| 1939.4+y               | (17 <sup>+</sup> )   | 96.2 2                                   | 48 16                                          | 1843.1+y                            | (16 <sup>-</sup> )                                   | (E1)                  | 0.1262 19                         | obscured by strong 507.8y.                                                                  |
| 1000 2                 | (17+)                | 429.6 2                                  | 100 11                                         | 1509.83+y                           | $(15^{+})$                                           | Q<br>E1               | 0.0015                            |                                                                                             |
| 1990.2+y               | $(1/^{+})$           | 200.72                                   | 100                                            | 1700.45                             | (10)                                                 | <u>с</u> 1            | 0.0915                            |                                                                                             |
| 2025.8+y               | (1/')                | 400.4 2                                  | 100 24                                         | 1789.45+y<br>1625.41+y              | (10)<br>$(15^+)$                                     | Q                     |                                   |                                                                                             |

## Adopted Levels, Gammas (continued)

|                        |                      |                        |                        |           | -                      | $\gamma$ <sup>(218</sup> Ac) (continued) |                     |  |
|------------------------|----------------------|------------------------|------------------------|-----------|------------------------|------------------------------------------|---------------------|--|
| E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $E_{\gamma}^{\dagger}$ | $I_{\gamma}^{\dagger}$ | $E_f$     | $\mathbf{J}_{f}^{\pi}$ | Mult. <sup>†</sup>                       | $\alpha^{\ddagger}$ |  |
| 2121.0+y               | (18 <sup>-</sup> )   | 181.5 <sup>#</sup>     |                        | 1939.4+y  | $(17^{+})$             |                                          |                     |  |
| -                      |                      | 277.9 2                | 100 38                 | 1843.1+y  | (16 <sup>-</sup> )     | [E2]                                     | 0.203               |  |
| 2141.0+y               | $(18^{+})$           | 443.4 2                | 100                    | 1697.60+y | $(16^{+})$             | Q                                        |                     |  |
| 2239.6+y               | (19 <sup>+</sup> )   | 300.2 2                | 100                    | 1939.4+y  | $(17^{+})$             | (Q)                                      |                     |  |
| 2630.2+y               | $(20^{+})$           | 489.2 2                | 100                    | 2141.0+y  | $(18^{+})$             | (Q)                                      |                     |  |

<sup>†</sup> From  ${}^{209}\text{Bi}({}^{12}\text{C},3n\gamma)$ .

<sup>‡</sup> Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on  $\gamma$ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

<sup>#</sup> Placement of transition in the level scheme is uncertain.

Legend

### **Adopted Levels, Gammas**

#### Level Scheme

Intensities: Relative photon branching from each level



<sup>218</sup><sub>89</sub>Ac<sub>129</sub>



### **Adopted Levels, Gammas**



