²²²Pa α decay (4.1 ms) 1970Bo13,1979Sc09,2019Mi08

	History		
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh, M. S. Basunia, Murray Martin et al.,	NDS 160,405 (2019)	30-Oct-2019

Parent: 222 Pa: E=0.0; $T_{1/2}$ =4.1 ms 6; $Q(\alpha)$ =8890 syst; $\%\alpha$ decay=100

2019Mi08: 222 Pa activities obtained from the α -decay chains starting from 226 Np or in 181 Ta(48 Ca,X),E=212, 217, 226 MeV at the UNILAC accelerator of GSI facility. Evaporation residues (ERs) were separated by the SHIP velocity filter and implanted into the COMPAct Spectroscopy Set-up (COMPASS), consisting of silicon detectors. Measured energy and time spectra of correlations between ERs and α particles from subsequent decays; deduced E α and half-lives of decays of 222 Pa and 218 Ac.

Additional information 1.

²¹⁸Ac Levels

$\frac{\text{E(level)}^{\dagger}}{(0.0)}$ ≈ 193 ≈ 407 ≈ 529 ≈ 560

≈580

α radiations

$E\alpha^{\dagger}$	E(level)	$I\alpha^{\ddagger \&}$	HF#	Comments
8160 [@]	≈580	≈17 [@]	≈16 [@]	
8180 [@]	≈560	≈17 [@]	≈18 [@]	
8210 [@]	≈529	≈17 [@]	≈22 [@]	I α (8210 α + 8180 α + 8160 α) \approx 50 (1970Bo13). Other: 8.31 MeV 4 (2019Mi08), emitted from the decay of ²²² Pa, only when the activity of ²²² Pa is produced directly in a reaction, not from the ²²⁶ Np α -decay chain, which may suggest an isomer in ²²² Pa.
8330	≈407	≈20	≈40	E α : α peak is strongly mixed somewhat with 8.36 MeV- α line emitted by 214 Fr activity. Other: 8.47 MeV 4 (2019Mi08).
8540	≈193	≈30	≈105	E α : α peak is mixed somewhat with α lines emitted by 214m Fr activity. Other: 8.63 MeV 4 (2019Mi08).

[†] From 1970Bo13. Uncertainty is not given by the authors, but expected to be ≈20 keV, based on data for other isotopes in the paper. Only one α of 8210 keV was observed by 1979Sc09. In 2019Mi08, two main peaks were reported at 8.63 and 8.47 MeV, and a third one at 8.31 MeV. It appears that α energies are about 100 keV higher in 2019Mi08, as compared to those in 1970Bo13. Note that statistics are much weaker in 2019Mi08 as compared to those in 1970Bo13.

²²²Pa-T_{1/2}: Unweighted average of 4.5 ms 3 (2019Mi08, time correlations between ²²²Pa fragments and subsequent α decays); 3.3 ms 3 (1995AnZY); 2.9 ms +6-4 (1979Sc09); 5.7 ms 5 (1970Bo13). In ²²²Pa Adopted Levels in the ENSDF database (March 2011 update), value is adopted from 1979Sc09.

²²²Pa-Q(α): 8890 50 (syst, 2017Wa10).

²²²Pa-%α decay: Only α decay has been observed for the decay of ²²²Pa. Theoretical partial $T_{1/2}$ =21.3 s for ²²²Pa ε decay (2019Mo01) gives %ε+%β⁺=0.02.

¹⁹⁷⁰Bo13: measured $E\alpha$, $I\alpha$, hindrance factors, half-life of decay of 222 Pa.

¹⁹⁷⁹Sc09: measured $E\alpha$, half-life of decay of 222 Pa.

[†] Level energies are deduced from Q(α)=8890 50 (syst, 2017Wa10) and E α values given here.

[‡] From 1970Bo13

[#] $r_0(^{218}\text{Ac})=1.5515$ 79, obtained using $r_0(^{218}\text{Ra})=1.5571$ 17, $r_0(^{216}\text{Ra})=1.5664$ 65, $r_0(^{220}\text{Th})=1.5514$ 30, and $r_0(^{218}\text{Th})=1.529$ 15

$^{222}\text{Pa}~\alpha$ decay (4.1 ms) 1970Bo13,1979Sc09,2019Mi08 (continued)

α radiations (continued)

[@] Complex peak in 1970Bo13, too broad to be a single peak. Authors divide the peak in the three components. Total multiplet intensity \approx 50 divided equally by the evaluators between the three α groups.
[&] Absolute intensity per 100 decays.