²⁰⁹Bi(¹²C,3nγ) **1994De04**

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh, M. S. Basunia, Murray Martin et al.,	NDS 160,405 (2019)	30-Oct-2019

1994De04 (also 1989De06): E=64-82 MeV. Measured E γ , I γ , $\gamma\gamma$, ce, $\gamma(\theta)$, $\gamma\gamma(\theta)$ (DCO), $\gamma\gamma(t)$. 1994De04 also studied (¹³C,4n γ), but no data were given from this reaction.

²¹⁸Ac Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0+x			Additional information 1.
122.5+x 2	#		
122.5+y [@]	(9 ⁻)#	32 ns 9	E(level): $y=x+z$, where z is expected to be less than 100 keV. $T_{1/2}$: from delayed component in $(122.5\gamma)(\text{total }\gamma)(t)$ curve (1994De04) . 1994De04 noted that mult $(122.5\gamma)=M1$ would give a much shorter half–life for 122.5+x level, and suggested one or more intermediate transitions of <100 keV from the (9^-) state to the 122.5+x level. 1994De04 also pointed out contribution from a prompt component in the $(122.5\gamma)(\text{total }\gamma)(t)$ distribution, which may suggest population of the 122.5+x level by γ rays from higher levels of short half-lives. Half-life of 32 ns is assigned by the evaluators to the 122.5+y, (9^-) level, while noting that 1994De04 did not explicitly assign this half-life to the (9^-) or any other level, either in their level-scheme Fig. 2 or in the text of their paper. Additional information 2.
226.90+y 24	(9^{-})		C = C = C = C = C = C = C = C = C = C =
416.10+y 14 506.00 + y ^C 13	(10)	103 ns 11	Configuration= $(\pi h_{9/2} \otimes v_{11/2})10 \otimes 0^{+}$ core (1994De04).
600.94+y <i>16</i>	(11^{-}) (10^{-})	105 115 11	E(level): the ordering of the 81-478 cascade is not established experimentally, the ordering given here is preferred by 1994De04 from theoretical considerations. Configuration= $(\pi h_{9/2} \otimes v g_{9/2}) \otimes 2^+$ (unfavored).
630.38+y [@] 14	(11 ⁻)		
681.98+y ^b 14	(11^{+})		
789.16+y ^{&} 15	(12^{+})		
990.45+y ^a 15	(12 ⁻)		
1044.89+y ^c 17	(13 ⁺)		
1088.50+y [@] 17	(13 ⁻)		
1181.93+y ^b 17	(13^{+})		
1258.07+y 19	(14^{+})		
1335.86+y ^d 22	(14 ⁻)		
$1418.54 + y^a$ 17	(14^{-})		
1509.83+y ^e 19	(15 ⁺)		
1557.23+y 19	(15)		
1625.41+y ^o 19	(15')		
$1697.60 + y^{\circ} 23$ 1780 45 + $y^{\circ} 10$	(16^{-})		
1709.43+y 19 1942 1 $yd 2$	(10^{-})		
$1043.1 + y^{\circ} 3$ 1939 $4 + y^{\circ} 3$	(10^{-})		
1990.2+y 3	(17^{+})		
$2025.8 + y^{b} 3$	(17^{+})		
$2121.0 + y^{d} 4$	(18 ⁻)		
2141.0+v ^{&} 3	(18^{+})		
2239.6+y ^c 4	(19 ⁺)		
2630.2+y& 4	(20 ⁺)		

²⁰⁹Bi(¹²C,3nγ) **1994De04** (continued)

²¹⁸Ac Levels (continued)

[†] From least-squares fit to γ -ray energies.

- [‡] Spin, parity and approximate configurations (with only the strongest components given) are as proposed by 1994De04, based on γ multipolarities, E1, E2, and M1 branching ratios, and shell-model considerations. Since the spins of low-energy levels have not been determined, all the J^{π} values are given in parentheses. The assignments are the same in the Adopted Levels. Note that all the parities were assigned outside parentheses in the level-scheme Fig. 2 of 1994De04.
- [#] From the systematics of neighboring odd-odd nuclides, configuration= $\pi h_{9/2} \otimes v_{g_{9/2}}$.
- [@] Band(A): Band based on (9⁻), s=+1. Configuration= $(\pi h_{9/2} \otimes \nu g_{9/2}) \otimes (0^+, 2^+, ... \text{core})$.
- & Band(a): Band based on (12⁺), s=+1. Configuration= $(\pi h_{9/2} \otimes v_{9/2}) \otimes (3^-, 5^-, ... \text{core})$.
- ^{*a*} Band(B): Band based on (12⁻), s=-1. Configuration= $(\pi h_{9/2} \otimes \nu i_{11/2}) \otimes (0^+, 2^+, ... \text{core})$.
- ^b Band(b): Band based on (11⁺), s=-1. Configuration= $(\pi h_{9/2} \otimes v i_{11/2}) \otimes (3^-, 5^-, ... \text{core})$.
- ^{*c*} Band(C): Band based on (11⁺), s=-1. Configuration= $(\pi i_{13/2} \otimes v_{29/2}) \otimes (0^+, 2^+, ... \text{core})$.

^d Band(c): Band based on (14⁻), s=-1. Configuration= $(\pi i_{13/2} \otimes \nu g_{9/2}) \otimes (3^-, 5^-, ... \text{core})$.

						²⁰⁹ Bi(¹² C,3n γ)	1994De04	(continu	ed)
							γ ⁽²¹⁸ Ac)		
Eγ	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	α b	$I_{(\gamma+ce)}$	Comments
(z)		122.5+y	(9 ⁻)	122.5+x					E_{γ} : z corresponds to either one or more gamma rays, with energy of <100 keV.
81.1 ^{<i>a</i>} 2	10 [#] 4	681.98+y	(11+)	600.94+y	(10 ⁻)	(E1) [@]	0.198		$\alpha(L)=0.1499 \ 24; \ \alpha(M)=0.0364 \ 6 \\ \alpha(N)=0.00950 \ 15; \ \alpha(O)=0.00210 \ 4; \ \alpha(P)=0.000346 \ 6; \\ \alpha(Q)=1.77\times10^{-5} \ 3$
91.0 2	29.0 [#] 8	506.99+y	(11+)	416.10+y	(10 ⁻)	(E1) [@]	0.1461 23		$ \begin{array}{l} \alpha(\text{L}) = 0.1105 \ 17; \ \alpha(\text{M}) = 0.0268 \ 4 \\ \alpha(\text{N}) = 0.00700 \ 11; \ \alpha(\text{O}) = 0.001552 \ 24; \ \alpha(\text{P}) = 0.000258 \ 4; \\ \alpha(\text{Q}) = 1.374 \times 10^{-5} \ 21 \end{array} $
96.2 2	6.2 [#] 21	1939.4+y	(17 ⁺)	1843.1+y	(16 ⁻)	(E1) [@]	0.1262 19		α (L)=0.0954 <i>15</i> ; α (M)=0.0231 <i>4</i> α (N)=0.00604 <i>9</i> ; α (O)=0.001342 <i>21</i> ; α (P)=0.000224 <i>4</i> ; α (Q)=1.215×10 ⁻⁵ <i>18</i>
107.0 2	2.5 [#] 7	789.16+y	(12+)	681.98+y	(11+)	(M1+E2) [@]		39 11	 I_(γ+ce): listed in 1994De04. No ce data given for this transition, and since the γ energy is very close to the K-binding energy, the theoretical conversion coefficients are not reliable. Intensity balance at the 789.16+y level: [I(γ+ce)(107.0γ) + I(γ+ce)(158.8γ) + I(γ+ce)(282.3γ)] - [I(γ+ce)(468.9γ) + I(γ+ce)(299.3γ)] = -19 16.
115.6 2	0.8 [#] 4	1625.41+y	(15 ⁺)	1509.83+y	(15+)	[M1+E2]	8.4 29		$\alpha(K)=4.6\ 44;\ \alpha(L)=2.8\ 11;\ \alpha(M)=0.74\ 33$ $\alpha(N)=0.195\ 87;\ \alpha(O)=0.043\ 19;\ \alpha(P)=0.0072\ 25;$ $\alpha(Q)=2.3\times10^{-4}\ 19$
^x 118.5 2	12.1 13					D			A ₂ =-0.40 15; DCO(D)=0.81 20
122.5 2 ×130.7 2	32.3 <i>25</i> 6.1 8	122.5+x		0+x		M1 [@]	9.56		$\begin{array}{l} A_2 = +0.04 \ 8; \ DCO(Q) = 1.24 \ 23; \ \alpha(L) exp = 1.3 \ 9 \\ \alpha(K) = 7.65 \ 12; \ \alpha(L) = 1.448 \ 22; \ \alpha(M) = 0.347 \ 6 \\ \alpha(N) = 0.0921 \ 14; \ \alpha(O) = 0.0214 \ 4; \ \alpha(P) = 0.00396 \ 6; \\ \alpha(Q) = 0.000351 \ 6 \\ A_2 = +0.36 \ 15; \ DCO(D) = 0.69 \ 20 \end{array}$
137.0 2	1.1 [#] 3	1181.93+y	(13 ⁺)	1044.89+y	(13 ⁺)	[M1+E2] [@]	4.8 22		DCO(Q)=0.72 20 $\alpha(K)=2.9$ 27; $\alpha(L)=1.42$ 37; $\alpha(M)=0.37$ 12 $\alpha(N)=0.098$ 32; $\alpha(O)=0.0219$ 64; $\alpha(P)=0.0037$ 8; $\alpha(Q)=1.4\times10^{-4}$ 12
140.4 2	15.1 [#] <i>13</i>	1697.60+y	(16 ⁺)	1557.23+y	(15 ⁻)	E1	0.215		DCO(Q)=2.03 23; DCO(D)=0.91 13; α (L)exp<0.04 6 α (K)=0.1684 25; α (L)=0.0355 6; α (M)=0.00855 13 α (N)=0.00224 4; α (O)=0.000503 8; α (P)=8.63×10 ⁻⁵ 13; α (Q)=5.23×10 ⁻⁶ 8
158.8 2	32 [#] 4	789.16+y	(12 ⁺)	630.38+y	(11 ⁻)	E1	0.1601		A ₂ =-0.19 14; DCO(Q)=1.80 16; DCO(D)=0.95 10; α (L)exp<0.07 6

ω

L

					2	²⁰⁹ Bi(¹² C,	3 nγ) 1 9	94De04 (continued)
						2	y(²¹⁸ Ac) (continued)
E_{γ}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	α b	Comments
164.0 2	12.7 [#] 10	1789.45+y	(16 ⁻)	1625.41+y	(15 ⁺)	E1	0.1482	$\alpha(K)=0.1260\ 18;\ \alpha(L)=0.0258\ 4;\ \alpha(M)=0.00622\ 9$ $\alpha(N)=0.001630\ 24;\ \alpha(O)=0.000367\ 6;\ \alpha(P)=6.34\times10^{-5}\ 9;\ \alpha(Q)=3.97\times10^{-6}\ 6$ $A_2=-0.13\ 6;\ DCO(Q)=1.67\ 23;\ DCO(D)=0.92\ 14;\ \alpha(L)exp=0.025\ 14$ $\alpha(K)=0.1168\ 17;\ \alpha(L)=0.0238\ 4;\ \alpha(M)=0.00572\ 9$
169.5 2	30.2 15	1258.07+y	(14+)	1088.50+y	(13 ⁻)	E1	0.1369	α (N)=0.001501 22; α (O)=0.000339 5; α (P)=5.85×10 ⁻⁵ 9; α (Q)=3.70×10 ⁻⁶ 6 A ₂ =-0.24 8; DCO(Q)=1.77 12; DCO(D)=0.95 7; α (L)exp=0.07 4 α (K)=0.1080 16; α (L)=0.0219 4; α (M)=0.00526 8 α (N)=0.001380 20; α (O)=0.000311 5; α (P)=5.39×10 ⁻⁵ 8; α (Q)=3.43×10 ⁻⁶ 5
174.0 2	8.4 [#] 15	1509.83+y	(15 ⁺)	1335.86+y	(14 ⁻)	(E1)	0.1286	A ₂ =-0.25 <i>14</i> ; DCO(Q)=1.7 <i>3</i> α (K)=0.1016 <i>15</i> ; α (L)=0.0205 <i>3</i> ; α (M)=0.00492 7 α (N)=0.001291 <i>19</i> ; α (O)=0.000291 <i>5</i> ; α (P)=5.05×10 ⁻⁵ 8; α (Q)=3.24×10 ⁻⁶ 5
175.0 2	11 [#] 4	681.98+y	(11 ⁺)	506.99+y	(11 ⁺)	M1	3.48	A ₂ =+0.40 <i>10</i> ; DCO(Q)=1.02 <i>15</i> ; α (L)exp=0.5 <i>2</i> α (K)=2.79 <i>4</i> ; α (L)=0.523 <i>8</i> ; α (M)=0.1253 <i>18</i> α (N)=0.0332 <i>5</i> ; α (O)=0.00773 <i>12</i> ; α (P)=0.001429 <i>21</i> ; α (Q)=0.0001267 <i>19</i>
181.5 <mark>&c</mark>		2121.0+y	(18-)	1939.4+y	(17^{+})			From $277.9\gamma-96.2\gamma$, $E\gamma=181.7$ 3.
189.2 2	37 [#] 3	416.10+y	(10 ⁻)	226.90+y	(9 ⁻)	M1	2.79	A ₂ =-0.03 4; DCO(Q)=1.7 3; DCO(D)=0.87 16; α (L)exp=0.33 10 α (K)=2.24 4; α (L)=0.419 6; α (M)=0.1004 15 α (N)=0.0266 4; α (O)=0.00619 9; α (P)=0.001146 17; α (Q)=0.0001015 15
191.4 2	24.2 [#] 25	1181.93+y	(13 ⁺)	990.45+y	(12 ⁻)	(E1)	0.1024	A ₂ =-0.29 8; DCO(Q)=1.93 25; DCO(D)=0.92 14 α (K)=0.0812 12; α (L)=0.01608 23; α (M)=0.00386 6 α (N)=0.001014 15; α (Q)=0.000229 4; α (P)=4.00×10 ⁻⁵ 6; α (Q)=2.62×10 ⁻⁶ 4
200.7 2	70 <i>3</i>	1990.2+y	(17+)	1789.45+y	(16 ⁻)	E1	0.0915	A ₂ =-0.14 6; DCO(Q)=1.84 14; α (L)exp<0.05 α (K)=0.0727 11; α (L)=0.01428 21; α (M)=0.00343 5 α (N)=0.000900 13; α (Q)=0.000204 3; α (P)=3.56×10 ⁻⁵ 5; α (Q)=2.36×10 ⁻⁶ 4
^x 204.3 2	8.7 6					(E1)	0.0878	$A_2=+0.10 6$; DC(D)=0.88 13 $\alpha(K)=0.0697 10$; $\alpha(L)=0.01366 20$; $\alpha(M)=0.00328 5$ $\alpha(N)=0.000861 13$; $\alpha(D)=0.000195 3$; $\alpha(P)=3.41\times10^{-5} 5$; $\alpha(D)=2.27\times10^{-6} 4$
206.8 2	11.1 ^{#} 14	1625.41+y	(15+)	1418.54+y	(14-)	(E1)	0.0853	$A_{2}=-0.02\ 6;\ DCO(Q)=1.96\ 23;\ DCO(D)=1.06\ 14$ $\alpha(K)=0.0678\ 10;\ \alpha(L)=0.01325\ 19;\ \alpha(M)=0.00318\ 5$
232.1 2	7.2 6	1789.45+y	(16 ⁻)	1557.23+y	(15 ⁻)	M1	1.574	$\alpha(N)=0.000835 \ I2; \ \alpha(O)=0.000189 \ 3; \ \alpha(P)=3.31\times10^{-5} \ 5; \ \alpha(Q)=2.21\times10^{-6} \ 4$ $A_{2}=-0.60 \ I4; \ DCO(Q)=2.5 \ 3; \ DCO(D)=1.1 \ I; \ \alpha(L1)exp+\alpha(L2)exp=0.31 \ I0$ $\alpha(K)=1.263 \ I8; \ \alpha(L)=0.236 \ 4; \ \alpha(M)=0.0565 \ 8$ $\alpha(N)=0.01408 \ 22; \ \alpha(O)=0.00248 \ 5; \ \alpha(D)=0.000644 \ I0; \ \alpha(O)=5.71\times10^{-5} \ 0.000644 \ I0; \ \alpha(O)=5.71\times10^{-5} \ 0.000646 \ I0; \ \alpha(O)=5.71\times10^{-5} \ 0.000666 \ I0; \\alpha(O)=5.71\times10^{-5} \ 0.000666 \ I0; \\alpha(O)=5.71\times10^{-$
236.1 ^{&c}		2025.8+y	(17 ⁺)	1789.45+y	(16 ⁻)			E_{γ} : this γ was probably obscured in the singles by the 236.6 γ . From 400.4 γ -164.0 γ , E γ =236.4 3.
236.6 2	24.3 [#] 16	1418.54+y	(14 ⁻)	1181.93+y	(13+)	E1	0.0622	A ₂ =-0.18 8; DCO(Q)=1.83 15; DCO(D)=0.81 12; α (K)exp=0.06 3 α (K)=0.0497 7; α (L)=0.00951 14; α (M)=0.00228 4 α (N)=0.000599 9; α (O)=0.0001360 20; α (P)=2.39×10 ⁻⁵ 4; α (Q)=1.649×10 ⁻⁶ 24

4

L

						²⁰⁹ Bi(¹² C	C ,3n γ) 1	1994De04 (continued)			
$\gamma(^{218}\text{Ac})$ (continued)											
Eγ	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^π	E_f	J_f^π	Mult. [‡]	α ^b	Comments			
265.8 2	42 [#] 6	681.98+y	(11+)	416.10+y	(10 ⁻)	E1	0.0476	$\begin{array}{l} A_2 = -0.15 \ 5; \ DCO(Q) = 1.86 \ 18; \ \alpha(K) \exp < 0.06 \ 3; \ \alpha(L) \exp < 0.009 \ 6 \\ \alpha(K) = 0.0381 \ 6; \ \alpha(L) = 0.00717 \ 11; \ \alpha(M) = 0.001716 \ 25 \\ \alpha(N) = 0.000451 \ 7; \ \alpha(O) = 0.0001028 \ 15; \ \alpha(P) = 1.82 \times 10^{-5} \ 3; \ \alpha(Q) = 1.283 \times 10^{-6} \\ 18 \end{array}$			
277.9 2	1.3 [#] 5	2121.0+y	(18 ⁻)	1843.1+y	(16 ⁻)	[E2]	0.203	$\alpha(K)=0.0840$ 12; $\alpha(L)=0.0876$ 13; $\alpha(M)=0.0235$ 4 $\alpha(L)=0.00624$ 0; $\alpha(Q)=0.001278$ 20; $\alpha(D)=0.000224$ 4; $\alpha(Q)=4.42\times10^{-6}$ 7			
279.8 2	2.0 8	1789.45+y	(16 ⁻)	1509.83+y	(15 ⁺)	(E1)	0.0423	$\begin{array}{l} \alpha(N)=0.00024 \ 9, \ \alpha(O)=0.001378 \ 20, \ \alpha(P)=0.000224 \ 4, \ \alpha(Q)=4.42\times10^{-7} \\ DCO(Q)=1.6 \ 4 \\ \alpha(K)=0.0339 \ 5; \ \alpha(L)=0.00635 \ 9; \ \alpha(M)=0.001518 \ 22 \\ \alpha(N)=0.000399 \ 6; \ \alpha(O)=9.10\times10^{-5} \ 13; \ \alpha(P)=1.611\times10^{-5} \ 23; \\ \alpha(Q)=1.150\times10^{-6} \ 17 \end{array}$			
282.3 2 *286.9 2	4.8 11	789.16+y	(12 ⁺)	506.99+y	(11+)	M1	0.914	Mult.: from intensity balance (1994De04) at the 1509.83+y level. DCO(D)=1.15 20; α (K)exp=0.4 3 α (K)=0.734 11; α (L)=0.1365 20; α (M)=0.0327 5 α (N)=0.00867 13; α (O)=0.00202 3; α (P)=0.000373 6; α (Q)=3.30×10 ⁻⁵ 5			
200.9 2	$11.1^{\#}22$	1335 86+v	(14^{-})	1044 89+v	(13^{+})	D		$DCO(\Omega) = 1.51.18$ $DCO(\Omega) = 1.06.12$			
293.6 2	9.0 [#] 10	416.10+y	(10 ⁻)	122.5+y	(9 ⁻)	(M1)	0.820	DCO(D)=0.88 <i>16</i> $\alpha(K)$ =0.659 <i>10</i> ; $\alpha(L)$ =0.1224 <i>18</i> ; $\alpha(M)$ =0.0293 <i>5</i> $\alpha(N)$ =0.00778 <i>11</i> ; $\alpha(O)$ =0.00181 <i>3</i> ; $\alpha(P)$ =0.000334 <i>5</i> ; $\alpha(Q)$ =2.96×10 ⁻⁵ <i>5</i>			
^x 295.6 2 299.1 2	$42^{\#} 4$ $40^{\#} 4$	1557.23+y	(15 ⁻)	1258.07+y	(14 ⁺)	D E1 [@]	0.0364	$A_2 = -0.125; DCO(D) = 0.9411$ $A_2 = -0.194; DCO(Q) = 1.6424; DCO(D) = 1.0010; \alpha(K)exp = 0.022$ $\alpha(K) = 0.02935; \alpha(L) = 0.005428; \alpha(M) = 0.00129519$			
299.3 2	54 [#] 5	1088.50+y	(13-)	789.16+y	(12+)	E1@	0.0364	$\begin{aligned} \alpha(\text{N}) = 0.00295 \text{ J}, \ \alpha(\text{L}) = 0.00342 \text{ S}, \ \alpha(\text{M}) = 0.001295 \text{ I} \text{J} \\ \alpha(\text{N}) = 0.000341 \text{ 5}; \ \alpha(\text{O}) = 7.78 \times 10^{-5} \text{ II}; \ \alpha(\text{P}) = 1.381 \times 10^{-5} \text{ 20}; \ \alpha(\text{Q}) = 9.99 \times 10^{-7} \\ \text{I4} \\ \text{A}_2, \text{ DCO and } \alpha(\text{K}) \text{exp are for } 299.3 + 299.1. \\ \text{A}_2 = -0.19 \text{ 4}; \text{ DCO}(\text{Q}) = 1.64 \text{ 24}; \text{ DCO}(\text{D}) = 1.00 \text{ I0}; \ \alpha(\text{K}) \text{exp} = 0.02 \text{ 2} \\ \alpha(\text{K}) = 0.0292 \text{ 5}; \ \alpha(\text{L}) = 0.00541 \text{ 8}; \ \alpha(\text{M}) = 0.001293 \text{ I9} \\ \alpha(\text{N}) = 0.000340 \text{ 5}; \ \alpha(\text{O}) = 7.76 \times 10^{-5} \text{ II}; \ \alpha(\text{P}) = 1.379 \times 10^{-5} \text{ 20}; \ \alpha(\text{Q}) = 9.97 \times 10^{-7} \\ \text{I4} \end{aligned}$			
300.2 2 308.5 2	5.0 <i>10</i> 5.6 <i>10</i>	2239.6+y 990.45+y	(19 ⁺) (12 ⁻)	1939.4+y 681.98+y	(17 ⁺) (11 ⁺)	(Q) D		 A₂, DCO and α(K)exp are for 299.3+299.1. DCO(Q)=0.75 <i>16</i> DCO(Q)=1.8 <i>2</i>; DCO(D)=1.11 <i>17</i> Uncertainty of 0.02 in DCO(Q) and 0.017 in DCO(D) in Table 1 of 1994De04 seem misprints. 			
x325.2 2 330.1 2	20 <i>4</i> 11.2 <i>13</i>	1418.54+y	(14 ⁻)	1088.50+y	(13 ⁻)	D M1	0.595	A ₂ =-0.10 6; DCO(D)=1.00 15 A ₂ =-0.28 8; DCO(Q)=2.5 5; DCO(D)=0.95 14; α (L1)exp+ α (L2)exp=0.06 3 α (K)=0.478 7; α (L)=0.0886 13; α (M)=0.0212 3			
333.2 2	8.0 14	1843.1+y	(16 ⁻)	1509.83+y	(15 ⁺)	D		α (N)=0.00562 8; α (O)=0.001308 19; α (P)=0.000242 4; α (Q)=2.14×10 ⁻⁵ 3 A ₂ =-0.18 11; DCO(Q)=2.3 5			

S

					2	⁰⁹ Bi(¹² C,	3n γ) 1 9	94De04 (continued)				
γ ⁽²¹⁸ Ac) (continued)												
Eγ	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Mult. [‡]	$\alpha^{\boldsymbol{b}}$	Comments				
x333.5 2 x342.0 2	32 [#] 6 3.8 23							A ₂ =-0.30 5				
360.0 2	1.2 [#] 4	990.45+y	(12-)	630.38+y	(11 ⁻)	[M1]	0.469	$\alpha(K)=0.377 \ 6; \ \alpha(L)=0.0698 \ 10; \ \alpha(M)=0.01670 \ 24$ $\alpha(N)=0.00443 \ 7; \ \alpha(O)=0.001030 \ 15; \ \alpha(P)=0.000191 \ 3; \ \alpha(Q)=1.688\times10^{-5} \ 24$ The intensity balance at the 990.45+y level is $[I(\gamma+ce)(308.5\gamma)+I(\gamma+ce)(360.0\gamma)+I(\gamma+ce)(574.3\gamma)]-[I(\gamma+ce)(191.4\gamma)+I(\gamma+ce)(428.1\gamma)]=-11 \ 5.$ Any E2 admixture would lower the conversion coefficient, and the intensity imbalance would become worse.				
370.9 2	47 [#] 4	1789.45+y	(16 ⁻)	1418.54+y	(14 ⁻)	E2	0.0868	A ₂ =+0.31 6; DCO(Q)=0.95 8; DCO(D)=0.52 6; α (K)exp=0.07 3 α (K)=0.0468 7; α (L)=0.0296 5; α (M)=0.00780 11 α (N)=0.00207 3; α (O)=0.000461 7; α (P)=7.64×10 ⁻⁵ 11; α (Q)=2.29×10 ⁻⁶ 4 Mult.: E1 in Table 2 of 1994De04 is a misprint.				
373.5 2 384.5 2	2.5 <i>10</i> 34 <i>3</i>	1418.54+y 506.99+y	(14 ⁻) (11 ⁺)	1044.89+y 122.5+y	(13 ⁺) (9 ⁻)	D M2	1.201	DCO(Q)=2.0 4 $A_2 = -0.08 \ 8; \ \alpha(K) \exp = 0.9 \ 3; \ \alpha(L1) \exp + \alpha(L2) \exp = 0.29 \ 13; \ \alpha(M) \exp = 0.05 \ 3 \ \alpha(K) = 0.891 \ 13; \ \alpha(L) = 0.232 \ 4; \ \alpha(M) = 0.0583 \ 9 \ \alpha(N) = 0.01561 \ 22; \ \alpha(O) = 0.00362 \ 6; \ \alpha(P) = 0.000661 \ 10; \ \alpha(Q) = 5.48 \times 10^{-5} \ 8 \ 10^{-5} \ 8 \ 10^{-5} \ 8 \ 10^{-5} \ 8^{-5} \ 10^{-5} \ 10$				
400.4 2	5.9 14	2025.8+y	(17^+)	1625.41+y	(15^+)	Q		DCO(Q)=1.24 25				
428.1 2	$32.0^{"} 21$	1418.54+y	(14)	990.45+y	(12)	Q		$A_2 = +0.26 5; DCO(Q) = 1.0 I$				
429.6 2 439.5 2	33.5 21	1939.4+y 1697.60+y	(17^{+}) (16^{+})	1258.07+y	(13^+) (14^+)	Q E2	0.0556	A ₂ =+0.29 8; DCO(Q)=1.02 11 A ₂ =+0.17 5; DCO(Q)=0.93 11; DCO(D)=0.50 6; α (K)exp=0.030 9 α (K)=0.0335 5; α (L)=0.01644 24; α (M)=0.00429 6 α (N)=0.001139 16; α (O)=0.000255 4; α (P)=4.28×10 ⁻⁵ 6; α (Q)=1.588×10 ⁻⁶ 23				
443.4 2	24 [#] 3	2141.0+y	(18 ⁺)	1697.60+y	(16 ⁺)	Q		DCO(Q)=0.94 12; DCO(D)=0.53 8				
443.5 2	12.4 [#] 17	1625.41+y	(15 ⁺)	1181.93+y	(13 ⁺)	E2	0.0544	DCO(Q)=0.84 <i>14</i> ; DCO(D)=0.42 <i>7</i> ; α (K)exp=0.05 <i>3</i> α (K)=0.0329 <i>5</i> ; α (L)=0.01595 <i>23</i> ; α (M)=0.00416 <i>6</i> α (N)=0.001104 <i>16</i> ; α (Q)=0.000247 <i>4</i> ; α (P)=4.15×10 ⁻⁵ <i>6</i> ; α (Q)=1.557×10 ⁻⁶ 22				
458.1 2 465.1 2	27.2 <i>21</i> 33.0 <i>20</i>	1088.50+y 1509.83+y	(13 ⁻) (15 ⁺)	630.38+y 1044.89+y	(11 ⁻) (13 ⁺)	Q E2	0.0483	α (K)exp for 443.5+443.4. A_2 =+0.33 7; DCO(Q)=0.90 13; DCO(D)=0.58 7 A_2 =+0.17 4; DCO(Q)=0.97 13; α (K)exp=0.020 16 α (K)=0.0300 5; α (L)=0.01364 20; α (M)=0.00354 5 α (N)=0.000941 14; α (O)=0.000211 3; α (P)=3.56×10 ⁻⁵ 5; α (Q)=1.408×10 ⁻⁶ 20				
468.7 2	14.4 [#] 20	1557.23+y	(15 ⁻)	1088.50+y	(13 ⁻)	Q		$A_2 = +0.23 5$; DCO(D)=0.55 6 A_2 and DCO are for 468.9+468.7.				
468.9 2	47 [#] 5	1258.07+y	(14+)	789.16+y	(12+)	Q		$A_2 = +0.23 5$; DCO(D)=0.55 6 A_2 and DCO are for 468.9+468.7.				
478.5 ^{<i>a</i>} 2	16 [#] 4	600.94+y	(10 ⁻)	122.5+y	(9 ⁻)	M1	0.217	DCO(Q)=1.18 20; α (K)exp=0.31 9; α (L1)exp+ α (L2)exp=0.06 2 α (K)=0.1748 25; α (L)=0.0321 5; α (M)=0.00769 11 α (N)=0.00204 3; α (O)=0.000474 7; α (P)=8.77×10 ⁻⁵ 13; α (Q)=7.78×10 ⁻⁶ 11				
489.2 2	16.2 17	2630.2+y	(20^{+})	2141.0+y	(18^{+})	(Q)		A ₂ =+0.14 8				

From ENSDF

²¹⁸₈₉Ac₁₂₉-6

L

209 Bi(12 C,3n γ) **1994De04** (continued)

$\gamma(^{218}Ac)$ (continued)

Eγ	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Mult. [‡]	α b	Comments
^x 492.9 2	14.6 13							A ₂ =+0.24 7; DCO(Q)=1.4 3
500.1 2	32.9 [#] 21	1181.93+y	(13 ⁺)	681.98+y	(11 ⁺)	E2	0.0406	A ₂ =+0.32 5; DCO(Q)=1.12 14; DCO(D)=0.58 7; α (K)exp=0.026 10 α (K)=0.0261 4; α (L)=0.01081 16; α (M)=0.00279 4 α (N)=0.000741 11; α (O)=0.0001663 24; α (P)=2.83×10 ⁻⁵ 4; α (Q)=1.210×10 ⁻⁶ 17
507.0 ^{&c}		1843.1+y	(16 ⁻)	1335.86+y	(14 ⁻)			E_{γ} : this γ was probably obscured in the singles by the 507.8 γ . From 333.2 γ +174.0 γ , $E\gamma$ =507.2 3.
507.8 2	83 5	630.38+y	(11 ⁻)	122.5+y	(9 ⁻)	E2	0.0392	A ₂ =+0.30 5; DCO(\dot{Q})=1.06 13; DCO(D)=0.52 5; α (K)exp=0.022 7 α (K)=0.0253 4; α (L)=0.01030 15; α (M)=0.00266 4 α (N)=0.000706 10; α (O)=0.0001584 23; α (P)=2.69×10 ⁻⁵ 4; α (Q)=1.172×10 ⁻⁶ 17
537.9 2	57 5	1044.89+y	(13+)	506.99+y	(11+)	E2	0.0342	A ₂ =+0.23 4; DCO(Q)=0.97 10; α (K)exp=0.030 8 α (K)=0.0227 4; α (L)=0.00862 13; α (M)=0.00221 4 α (N)=0.000588 9; α (O)=0.0001322 19; α (P)=2.26×10 ⁻⁵ 4; α (Q)=1.041×10 ⁻⁶ 15
574.3 2	40.7 24	990.45+y	(12 ⁻)	416.10+y	(10 ⁻)	E2	0.0295	A ₂ =+0.19 5; DCO(Q)=1.05 <i>10</i> ; α (K)exp=0.04 2 α (K)=0.0200 3; α (L)=0.00708 <i>10</i> ; α (M)=0.00181 3 α (N)=0.000480 7; α (O)=0.0001082 <i>16</i> ; α (P)=1.86×10 ⁻⁵ 3; α (Q)=9.11×10 ⁻⁷ <i>13</i>
x85412	128 14							

-

854.1 2 12.8 14

[†] Measured by 1994De04 at $E(^{12}C)=72$ MeV bombarding energy.

[‡] Adopted by 1994De04 from their conversion electron and $\gamma\gamma(\theta)$ DCO-measurements.

[#] Intensities were deduced from coincidence data; the peaks were contaminated (1994De04).

[@] The electric/magnetic character is deduced from the intensity balance (1994De04).

[&] This transition is not listed in 1994De04; however, it is shown dashed on their level scheme, with a note that the line was not confirmed by $\gamma\gamma$ coincidences. Therefore, it is assumed that the γ is an expected transition, not seen.

^a The ordering of the 81-478 cascade is not established experimentally.

^b Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^c Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

 $^{218}_{\ 89}{\rm Ac}_{129}$

²¹⁸₈₉Ac₁₂₉

