$^{217}_{92}\mathrm{U}_{125}$ From ENSDF $^{217}_{92}\mathrm{U}_{125}$

Adopted Levels

Type Author Citation Literature Cutoff Date

Full Evaluation Balraj Singh NDS 147, 382 (2018)

Literature Cutoff Date
1-Dec-2017

 $S(n)=8160 \ SY; \ S(p)=2120 \ SY; \ Q(\alpha)=8430 \ SY$ 2017Wa10 Estimated uncertainties (2017Wa10): 80 for S(n), 90 for S(p), 70 for $Q(\alpha)$. $S(2n)=18090 \ 110, \ S(2p)=2530 \ 70, \ Q(\varepsilon p)=5390 \ 70 \ (syst, \ 2017Wa10).$

²¹⁷U evaluated by B. Singh.

2000Ma65: assignment: 182 W(193-MeV 40 Ar,5n), recoil separator; parent of 215-ms 213 Th (7701-keV α).

2005Le42: 217 U produced in 182 W(40 Ar,5n),E=186 MeV reaction, double-sided silicon detector. Measured E α , $T_{1/2}$. Only one questionable event assigned to 217 U.

Additional information 1.

²¹⁷U Levels

E(level) $T_{1/2}$ Comments016 ms + 21-6 $%\alpha \approx 100; \%\varepsilon + \%\beta^+ = ?$ Only the α decay mode has been observed. Theoretical calculations give $T_{1/2}(\alpha) = 0.407 \text{ s}$, $T_{1/2}(\beta) = 6.62 \text{ s} (1997\text{Mo}25)$, suggesting $\%\varepsilon + \beta^+ \approx 6\%$.E(level): the observed 16-ms activity is assumed to correspond to the ground state of ^{217}U . J^π : $1/2^-$ proposed from systematics (2017Au03), ($1/2^-$) also listed in 2005Le42. $T_{1/2}$: $15.6 \text{ ms} + 213 - 57 \text{ from decay curve for 8005}\alpha$ (2000Ma65). Other: 0.19 ms +113-10 (2005Le42) for decay curve for 8024 α with only one questionable event assigned to ^{217}U . Evaluator prefers to adopt $T_{1/2}$ measurement in 2000Ma65 as it is based on an unambiguous peak from $\alpha\alpha$ -coincidence events showing four generations of α -decays.