Adopted Levels, Gammas

	I	History		
Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	B. Singh, R. Shearman	NDS 147, 382 (2018)	1-Dec-2017	

 $Q(\beta^{-}) = -4863 \ 19$; $S(n) = 6164 \ 16$; $S(p) = 3228 \ 15$; $Q(\alpha) = 9435 \ 4$ 2017Wa10 S(2n)=14858 14, S(2p)=4906 13, Q(\varepsilon p)=1626 14 (2017Wa10).

²¹⁷Th evaluated by B. Singh and R. Shearman.

1968Va18: ²¹⁷Th produced and identified in ²⁰⁶Pb(¹⁶O,5n),E=166 MeV at Berkeley HILAC facility, He-jet system, measured half-life of ²¹⁷Th decay. Later studies for production and decay of ²¹⁷Th isotope: ²⁰⁴Pb(¹⁶O,3n),E=91 MeV at Chalk-River (1973Ha32); ¹⁹⁸Pt(²⁸Si, α 5n),E=140-180 MeV at JAERI-tandem accelerator (2000Ni02); ¹⁷⁰Er(⁵¹V,p3n),E=214-286 MeV and 170 Er(50 Ti,3n),E=215-235 MeV at GSI (2000He17); 181 Ta(40 Ar,p3n),E=182 MeV at GSI (2002He29); 170 Er(50 Ti,3n),E=4.35 MeV/nucleon at GSI (2005Ku31); ¹⁷⁶Yb(⁵⁰Ti,a5n),E(⁵⁰Ti)=231-255 MeV at GSI (2015Kh09).

2007Ma57 claimed to have found evidence for very long-lived isomers in ^{211,213,217,218}Th in naturally-occurring Th sample using inductively coupled plasma-sector field mass spectrometry, and suggested that such isomers could be associated with a new class of long-lived high-spin superdeformed or hyperdeformed structures. However, 2008La14, using accelerator mass spectrometry (AMS), with two orders of magnitude higher sensitivity than in 2007Ma57, could not confirm the existence of such long-lived activities.

Additional information 1.

²¹⁷Th Levels

Cross Reference (XREF) Flags

²¹⁷Th IT decay (141 ns) Α

²¹⁷Th IT decay (67 μ s) В С

²²¹U α decay (0.66 μ s)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF	Comments
0.0 673.3 <i>1</i>	(9/2 ⁺) (15/2 ⁻)	0.252 ms 4	ABC	⁶ <i>α</i> =100 Only the <i>α</i> decay has been observed. Comparison of theoretical T _{1/2} >100 s for <i>β</i> decay (1997Mo25) and T _{1/2} =0.252 ms gives %ε<0.0003%. J ^{<i>π</i>} : analogy to g.s. J ^{<i>π</i>} in N=127 isotones, ²¹⁵ Ra and ²¹³ Rn. T _{1/2} : from (evaporation residues (ER)) <i>α</i> correlated or from <i>α</i> decays. The value is unweighted average of 0.259 ms 12 (2015Kh09, from ER-9269α decay); 0.257 ms 2 (2005Ku31, ER-9269α decay); 0.237 ms 2 (2002He29, average of 0.237 ms 1, 0.229 ms 6, 0.245 ms 6 from 9261 <i>α</i> , 8725 <i>α</i> and 8455 <i>α</i> , respectively); 0.248 ms 3 (2000He17, average of 0.247 ms 3, 0.293 ms 28, 0.250 ms 8 from 9268 <i>α</i> , 8731 <i>α</i> and 8459 <i>α</i> , respectively); 0.261 ms +22−18 (2000Ni02, average of 0.261 ms +22−18, 0.29 ms +24−9, 0.21 ms +10−5 from 9247 <i>α</i> , 8713 <i>α</i> and 8429 <i>α</i> , respectively); 0.252 ms 7 (1973Ha32, from decay of 9250 <i>α</i>). Weighted average is 0.248 ms <i>4</i> but with reduced χ^2 of 10.4. If the seemingly discrepant value of 0.237 ms 2 from 2002He29 is omitted from the averaging procedure, weighted average is 0.254 ms 2 with acceptable reduced χ^2 =1.7, as compared to critical χ^2 =2.4 at 95% confidence level. Others: 0.230 ms 106 (2009QiZZ), 0.310 ms 70 (2005Li17, from 9250 <i>α</i>); <0.3 ms (1968Va18, from 9250 <i>α</i>). The main <i>α</i> transition observed at E <i>α</i> =9269 9 (2005Ku31), 9261 5 (2002He29), 9268 10 (2000He17), 9247 15 (2000Ni02), 9250 20 (1973Ha32), 9250 10 (1968Va18). Non-observation of (9269 <i>α</i>) <i>γ</i> -coin (2005Ku31) is consistent with 9269 <i>α</i> being a ground-state to ground-state transition. %IT=100 J ^{<i>π</i>} : (E3) <i>γ</i> to (9/2 ⁺); analogy to isomeric states in ²¹³ Rn and ²¹⁵ Ra.

Adopted Levels, Gammas (continued)

²¹⁷Th Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF	Comments
1942.61 15	$(17/2^+)$		В	
2251.91 78 2251.91+x	$(21/2^+)$ $(25/2^+)$	67 μs +17–11	B	%IT=100
				E(level): x<110 keV, see comment in the γ -table.
				average of 64 μ s +64-22, 69 μ s +32-17 and 66 μ s +27-15 for 309 γ , 673 γ and 1269 γ , respectively).

 † Deduced by evaluators from $E\gamma$ data.

[±] From similarity to level structures and isomers in N=127 isotones ²¹⁵Ra, ²¹³Rn, ²¹¹Po and ²⁰⁹Pb (1989Dr02).

						7()	(III)	
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}	\mathbf{E}_{f}	\mathbf{J}_f^π	Mult.	α^{\ddagger}	Comments
673.3	(15/2 ⁻)	673.3 1	100	0.0	(9/2 ⁺)	(E3)	0.0654	B(E3)(W.u.)=46 +25-12 α (K)=0.0367 6; α (L)=0.0211 3; α (M)=0.00561 8 α (N)=0.001507 22; α (O)=0.000346 5; α (P)=6.18×10 ⁻⁵ 9; α (Q)=2.67×10 ⁻⁶ 4 Mult.: from ce measurements in 1989Dr02 (see ²¹⁷ Th IT decay (141 ns) dataset); also
1942.61	(17/2 ⁺)	1269.3 <i>1</i>	100	673.3	(15/2 ⁻)	[E1]	0.01784	systematics of N=127 isotones. $\alpha(K)=0.01437 \ 21; \ \alpha(L)=0.00261 \ 4; \ \alpha(M)=0.000624 \ 9$ $\alpha(N)=0.0001663 \ 24; \ \alpha(O)=3.94\times10^{-5} \ 6; \ \alpha(P)=7.66\times10^{-6} \ 11; \ \alpha(Q)=7.34\times10^{-7} \ 11$
2251.91	(21/2+)	309.3 1	100	1942.61	(17/2 ⁺)	[E2]	0.1538	$\alpha(\text{IPF})=2.34\times10^{-6} 4$ $\alpha(\text{K})=0.0686 \ 10; \ \alpha(\text{L})=0.0627 \ 9; \ \alpha(\text{M})=0.01679$ 24 $\alpha(\text{N})=0.00450 \ 7; \ \alpha(\text{O})=0.001016 \ 15;$ $\alpha(\text{D})=0.001754 \ 25 = (\text{O}) = 4.24\times10^{-6} \text{ (}$
2251.91+x	(25/2+)	х		2251.91	(21/2+)			$\alpha(P)=0.000175425; \alpha(Q)=4.24\times10^{-6} 6$ $E_{\gamma}: x<110 \text{ keV}, \text{ from small number of thorium K}$ x-rays observed in $\gamma\gamma$ -coincidences gated by the 309, 673 or 1269 keV γ -rays 2005Ku31 concluded that the transition energy is probably below the K-electron binding energy of ≈ 110 keV. Mult.: E2 expected from systematics of N=127 isotones.

[†] From ²¹⁷Th IT decay (67 μ s).

[‡] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

 $\gamma(^{217}\text{Th})$

Adopted Levels, Gammas

Level Scheme

Intensities: Relative photon branching from each level

 $^{217}_{90}{
m Th}_{127}$