²²¹U α decay (0.66 μs) 2015Kh09

	I	History		
Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	B. Singh, R. Shearman	NDS 147, 382 (2018)	1-Dec-2017	

Parent: ²²¹U: E=0; $J^{\pi}=(9/2^+)$; $T_{1/2}=0.66 \ \mu s \ 14$; $Q(\alpha)=9890 \ 50$; $\% \alpha \ decay \approx 100.0$ ²²¹U- J^{π} , $T_{1/2}$: From 2015Kh09.

²²¹U-Q(α): From 2017Wa10 based on measured E α =9710 50 (2015Kh09) and assuming this α transition as ground-state to ground-state transition.

²²¹U-% α decay: % $\alpha \approx 100$ for ²²¹U α decay.

2015Kh09: ²²¹U produced as fusion residue in the fusion reaction ¹⁷⁶Yb(⁵⁰Ti, α 5n), E(⁵⁰Ti)= 231-255 MeV reaction on a 0.45 mg/cm² thick ¹⁷⁶YbF₃ target mounted on a rotating wheel synchronized with the pulsed beam, 5 ms on, 15 ms off. Evaporation residues (ER), separated by using gas-filled TransActinide Separator and Chemistry Apparatus (TASCA), with flight time of 0.53 μ s 6 through the separator, were implanted in a double-sided silicon strip detector. The events due to radioactive decays of implanted residues were selected from the events related to beam using a multiwire proportional counter (MWPC). Measured E α , I α , (ER) α correlated events from subsequent α -decay chains, half-lives of parent nuclei corresponding to the evaporation residues, and successive α -decay daughters, the latter identified by their known characteristics in literature. The identification of ²²¹U was made based on observed (ER) $\alpha \alpha$ correlated events in ²²¹U -> ²¹⁷Th -> ²¹³Ra decay chain using a fast data acquisition, combined with analog and digital (CANDI) readout system. Deduced α -reduced width.

²¹⁷Th Levels

E(level)	\mathbf{J}^{π}	T _{1/2}	Comments	
0	(9/2+)	0.252 ms 4	$J^{\pi}, T_{1/2}$: from Adopted Levels.	

α radiations

Εα	E(level)	Iα‡	HF^{\dagger}	Comments
9710 <i>50</i>	0	100	0.95 23	Reduced alpha width ≈ 0.1 from Rasmussen formalism (2015Kh09). HF: deduced by evaluators. This value is typical of favored α decay supporting the same J^{π} for parent and daughter ground states.

[†] $r_0(^{217}\text{Th})=1.52\ 2$; interpolated value deduced from $r_0(^{214}\text{Th})=1.512\ 17$ (deduced in $^{218}\text{U}\ \alpha$ decay, see ENSDF database, May 2009 update), and $r_0(^{218}\text{Th})=1.529\ 15$ (deduced in $^{222}\text{U}\ \alpha$ decay, see ^{222}U Adopted dataset in ENSDF database, Dec 2015 update).

[‡] For absolute intensity per 100 decays, multiply by ≈ 1 .