Adopted Levels

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh	NDS 147, 382 (2018)	1-Dec-2017

 $Q(\beta^-)=3510 SY; S(n)=3310 SY; S(p)=9770 SY; Q(\alpha)=2150 SY$ 2017Wa10 Estimated uncertainties (2017Wa10): 300 for $Q(\beta^-)$, 360 for S(n), 420 for S(p) and $Q(\alpha)$. S(2n)=8250 300, S(2p)=18550 500 (syst, 2017Wa10).

²¹⁷Pb evaluated by B. Singh.

2010A124: ²¹⁷Pb nuclide identified in ⁹Be(²³⁸U,X) reaction with a beam energy of 1 GeV/nucleon produced by the SIS synchrotron at GSI facility. Target=2500 mg/cm². The fragment residues were analyzed with the high resolving power magnetic spectrometer Fragment separator (FRS). The identification of nuclei was made on the basis of magnetic rigidity, velocity, time-of-flight, energy loss and atomic number of the fragments using two plastic scintillators and two multisampling ionization chambers. The FRS magnet was tuned to center on ²¹⁰Au, ²¹⁶Pb, ²¹⁹Pb, ²²⁷At and ²²⁹At nuclei along the central trajectory of FRS. Comparisons of measured σ with model predictions using the computer codes COFRA and EPAX. See also previous report 2009A132 by the same group as 2010A124.

2017Ca12,2016Ca25: ²¹⁷Pb produced by fragmentation of E=1 GeV/nucleon ²³⁸U beam at GSI on a ⁹Be target of thickness 1.6 g/cm². Reaction products were separated and identified by GSI Fragment Separator (FRS) using $B\rho$ - Δ E-B ρ technique. The FRS tracking detectors were four time-projection chambers (TPCs), two ionization chambers, and thin plastic scintillators for tof measurement. Mass-over-charge (A/Q) ratios were measured for ions analyzed on an event-by-event basis. Finally selected ions of interest were implanted into a stack of double-sided silicon strip detectors SIMBA, which also detected β -decay events. Comparison with theoretical calculations using FRDM+QRPA, DF3+cQRPA KTUY and RHB+RQRPA models. (cQRPA=continuum quasi-random-phase approximation; FRDM=finite-range droplet model; DF3=density functional theory; RHB=relativistic Hartree-Bogoliubov; RQRPA=relativistic QRPA; KTUV=Koura-Tachibana–Uno–Yamada model). Relevance to r-process in nucleosynthesis.

Additional information 1.

²¹⁷Pb Levels

E(level)	T _{1/2}	Comments		
E(level) 0	<u>T_{1/2}</u> 19.9 s <i>53</i>	 Comments %β⁻=100 The β⁻ decay is the only decay mode expected. Production cross section measured in 2010A124, values are given in figure 2, plot of σ versus mass number for Pb isotopes. Statistical uncertainty=10%, systematic uncertainty=20% Production σ=4.80 nb (from e-mail reply of Oct 29, 2010 from H. Alvarez-Pol, which also stated that further analysis was in progress). From A/Z plot (figure 1 in 2010A124), a large number (certainly more than few hundreds) of events are assigned to ²¹⁷Pb. T_{1/2}: measured by 2017Ca12 (value of 20 s 5 given in 2016Ca25,2014Ca23), from (ion)β correlated decay curve and analyzed by maximum-likelihood method. E(level): the observed 20-s activity is assumed to correspond to the ground state of ²¹⁷Pb. I^π: 9/2 (1997Mo25, theoretical calculations): 9/2⁺ from systematics (2017Au03). 		