Adopted Levels

	Туре	Author	History Citation	Literature Cutoff Date 1-Dec-2017
	Full Evaluation	Balraj Singh	NDS 147, 382 (2018)	
$Q(\beta^{-}) = -5910 SY; S(n) = 8800$ Estimated uncertainty=70 for $S(2n) = 16940 70, S(2p) = 3540$	60; $S(p)=519 20$; $Q(\beta^-)$ (2017Wa10 20, $Q(\varepsilon p)=1635 I$	$Q(\alpha)=8489 \ 4$). 9 (2017Wa10).	2017Wa10	
²¹⁷ Pa evaluated by B. Singh.				
Production and identification: 1968Va18, ²⁰³ Tl(²⁰ Ne 6n) ²⁰⁶	5 Pb(20 Ne p8n)			

Production and identification: 1968Va18: 203 Tl(20 Ne,6n), 206 Pb(20 Ne,p8n). 1979Sc09: 181 Ta(40 Ar,4n), excitation function, parent of 213 Ac. 1997An02: 170 Er(51 V,4n), 197 Au(24 Mg,4n), excitation function. 1998Ik01: 194 Pt(28 Si,p4n), Recoil Mass Separator. 2002He29: 181 Ta(40 Ar,4n) parent of 213 Ac; delayed $\alpha\alpha$ coin. Additional information 1.

²¹⁷Pa Levels

E(level)	J^{π}	T _{1/2}	Comments		
0	(9/2-)	3.8 ms 2	 %α=100 Only the α decay was observed. Gross β decay theory calculations of 1973Ta30 and theoretical calculations of 1997Mo25 give T_{1/2}(ε)≈300 sec and 97 sec, respectively which correspond to ε decay branch of ≈0.0012% and 0.0036%, respectively. E(level): the observed 3.8-ms activity is assumed to correspond to the ground state of ²¹⁷Pa. J^π: favored α decay chain ²¹⁷Pa -> ²¹³Ac -> ²⁰⁹Fr; the g.s. J^π=9/2⁻ for ²⁰⁹Fr. T_{1/2}: from α-decay curve (2002He29). Measured half-lives are: 4.9 ms +6-8 (1979Sc09), 3.4 ms 2 (1996An21), 2.3 ms +5-3 (1998Ik01), 3.4 ms <i>I</i> (2000He17), 3.8 ms 2 (2002He29). Note that 2002He29, 2000He17 and 1996An21 are from the same group at GSI using SHIP. Values from 1979Sc09 and 1998Ik01 seem discrepant. 		
1854 7	(23/2 ⁻)	1.08 ms <i>3</i>	Additional information 2. $\%\alpha$ =73 4 (2002He29); %IT=27 4 (2002He29) J ^π : 2002He29 and other experimental papers proposed 29/2 ⁺ , but analysis in 2013As01 based on systematics of semi-closed shell nuclei suggested (23/2 ⁻) with a fully aligned configuration= $\pi h_{9/2}^2 \otimes v f_{1/2}^1$. 2014Ri07 also supported 23/2 ⁻ from theoretical calculations of T _{1/2} =1.1 ms for 23/2 ⁻ and 60 ms for 29/2 ⁺ using different models. T _{1/2} : from α -decay curves for several α groups (2002He29). Measurements are: 1.6 ms +10–5 (1979Sc09); 1.5 ms +9–4 (1998Ik01); 1.5 ms 1 for 10155 α , 1.3 ms +4–2 for 9912 α , 1.4 ms 2 for 9763 α (2000He17); 1.08 ms 3 (2002He29, weighted average of 1.08 ms 2 for 10157 α , 0.95 ms 5 for 9697 α , 0.94 ms 9 for 9552 α , 1.11 ms 20 for 9533 α , 1.03 ms 13 for 8306 α). Note that 2002He29 and 2000He17 are from the same group at GSI using SHIP facility. Others: 0.9 ms 6 (1995AnZY) 1.5 ms 2 (1995NiZS), both from the same group. E(level): approximate energy deduced by the evaluator from energy difference of the 10157- and 8337-keV α particles which were emitted from the 1.2-ms and 3.6-ms states, respectively, by assuming these α particles decay to the g.s. % α : from 2002He29, deduced from ratio of 0.15 2 for number of ^{217g} Pa nuclei from the ^{217m} Pa isomer decay and the total number of ^{217g} Pa nuclei, and using the number of α decay events from each of the two activities; the ratio itself was extracted from the fitting of the measured decay curve for the implanted evaporation residues and the α decays as a function of time.		