⁹Be(²³⁸U,Xγ) 2014Go20

History									
Туре	Author	Citation	Literature Cutoff Date						
Full Evaluation	Balraj Singh	NDS 147, 382 (2018)	1-Dec-2017						

2014Go20: $E(^{238}U)=1$ GeV/nucleon from UNILAC-SIS-18 accelerator facility at GSI. Reaction products separated in mass and atomic number by FRS magnetic spectrometer. Fragment identification achieved by measurement of magnetic rigidity and time-of-flight employing plastic scintillators and ionization chambers. Isotopes are separated by Z and A/q ratio with only the fully ionized (bare) ions selected. Separated fragments of interest are implanted in double-sided silicon strip (DSSSD) detectors. The gamma rays are detected by RISING array of 15 Ge Clusters, each cluster with seven elements. Measured $E\gamma$, $I\gamma$, $\gamma\gamma$ -coin, half-life of an isomer. Deduced levels, J, π , isomer, configuration. Comparison with large-scale shell model calculations. Discussed B(E2) values.

²¹⁷Bi Levels

E(level) [†]	$J^{\pi \#}$	T _{1/2}	Comments	
0 [‡] 744 [‡] 1 1236 [‡] 1 1429 2 1436 [‡] 2	$(9/2^{-})$ (13/2 ⁻) (17/2 ⁻) (15/2 ⁻ ,17/2 ⁻) (21/2 ⁻)	98.5 s <i>13</i>	T _{1/2} : from Adopted Levels.	
1436+x [‡]	(25/2 ⁻)	3.0 µs 2	%IT=100 Configuration= $\pi h_{9/2} \otimes v(2g_{9/2}^2)_{8^+}$. E(level): x=20-90 keV (2014Go20) based on no K-x rays which can be assigned to a transition from this level, and systematics of neighboring nuclides. T _{1/2} : average of time distributions and exponential fits for 200- and 492-keV γ rays (2014Go20). Other: 2.9 μ s 2 and 2.8 μ s <i>I</i> from decay curves for 492 γ and 744 γ , respectively (2014Go20).	

[†] From E γ data, assuming 1 keV energy uncertainty for each γ ray.

[±] Member of multiplet with configuration= $\pi h_{9/2} \otimes (^{216}\text{Pb core})$.

[#] From 2014Go20 for excited states based on systematics of lighter even-odd Bi isotopes.

							-		
Eγ	I_{γ}^{\ddagger}	E _i (level)	J_i^π	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult.	α #	$I_{(\gamma+ce)}^{\dagger}$	Comments
х		1436+x	(25/2 ⁻)	1436	(21/2 ⁻)				E_{γ} : x=20-90 keV (2014Go20) based on no K-x rays which can be assigned to a transition from this level, and systematics of neighboring nuclides.
200	63 6	1436	$(21/2^{-})$	1236	$(17/2^{-})$	[E2]	0.449	92 9	
492	84 8	1236	$(17/2^{-})$	744	$(13/2^{-})$	[E2]	0.0319	878	
685 744	14 <i>4</i> 99 <i>11</i>	1429 744	(15/2 ⁻ ,17/2 ⁻) (13/2 ⁻)	744 0	(13/2 ⁻) (9/2 ⁻)	[M1,E2] [E2]	0.033 <i>18</i> 0.0127	14 <i>4</i> 100 <i>11</i>	α : value overlaps M1 and E2.

 $\gamma(^{217}\text{Bi})$

[†] From 2014Go20.

[±] Deduced by evaluator from transition intensities and conversion coefficients.

[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

