Adopted Levels, Gammas

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	B. Singh, A. Chakraborty, S. Bhattacharya	NDS 147, 382 (2018)	1-Dec-2017

 $Q(\beta^{-})=-3502 \ 16$; $S(n)=7512 \ 16$; $S(p)=1876 \ 14$; $Q(\alpha)=9832 \ 10 \ 2017Wa10$ $S(2n)=13470 \ 17, \ S(2p)=6192 \ 13 \ (2017Wa10).$

²¹⁷Ac evaluated by B. Singh, A. Chakraborty and S. Bhattacharya.

²¹⁷Ac produced and identified by 1972No06, 1973No09 and 1973No02 in reactions: ²⁰⁷Pb(¹⁴N,4n) and ²⁰⁸Pb(¹⁴N,5n) at

E=70-96 MeV at the cyclotron laboratory of the Institute of Physical and Chemical Research (now RIKEN); measured E α , half-life of ground state and isomers in ²¹⁷Ac, angular distribution of α particles.

Decay scheme is basically as proposed by 1985De14 from their $\alpha\gamma$ -, $\gamma\gamma$ - and $\gamma(ce)$ coincidences. In the level scheme shown by 1982GoZU, ordering of the 478.9 and 349.0 gammas was reversed, and their (486.4 γ)(γ) coincidence spectrum indicates presence of the 349.0 γ and absence of the 478.9 γ . A 501.6-371.7-380.0-327.6 γ cascade was placed by 1983GoZX (also 1982GoZU) above the 1682 level, proposing levels at 3263, 2762, 2390 and 2010 keV, respectively. Due to the tentative nature of this unpublished work, these levels as well as a proposed 957 level are not adopted here, although, the data from this work can be found in the 209 Bi(12 C,4n γ) dataset.

²¹⁷Ac Levels

Cross Reference (XREF) Flags

A 217 Ac IT decay (740 ns)

- **B** ²²¹Pa α decay (5.9 μ s)
- C 209 Bi(12 C,4n γ):delayed γ

E(level) [†]	J^{π}	T _{1/2}	XREF	Comments
0.0	9/2-	69 ns 4	ABC	$\% \alpha = 100; \ \% \varepsilon + \% \beta^+ < 2$ $\mu = +3.83 \ 5 \ (1985De14,2014StZZ)$
				The favored α decay to 9/2 g.s. of 210 Fr, configuration= $\pi n_{9/2}$. $T_{1/2}$: from 1985De14 ((rf) α (t), previous value was 72 ns 5 in 1981MaYW). Others: 75 ns 3 (1982GoZU); 111 ns 7 (1973No09, from (rf) α (t), previous value was 0.10 μ s <i>I</i> in 1972No06).
				μ : from g factor=+0.85 <i>l</i> (1985De14), from time-differential perturbed $\alpha(\theta)$ measurements (α -TDPAD) technique. See 1985De14 for discussion on probable admixture in the main $\pi h_{9/2}$ g.s. configuration, and on the core-polarization effect. See also 1981MaYW from the same group.
				No α decays from ²¹⁷ Ra or its descendants were observed by 1976No09; upper limit for $\epsilon + \beta^+$ decay was set as 2%. $T_{1/2}(\epsilon + \beta^+) \approx 1000$ sec from gross β decay theory calculations of 1973Ta30. Therefore, prediction for $\epsilon + \beta^+$ decay branch is $\approx 6.9 \times 10^{-9}$ %. Measured $E\alpha = 9650$ keV 10 (1973No09, also 1972No06,1973No02).
				Additional information 1.
660.2 <i>3</i>	13/2-		A C	J ^{π} : 660.3, E2 γ to 9/2 ⁻ ; systematics of 13/2 ⁻ states in neighboring nuclides. Configuration= $\pi h_{9/2} \otimes^{216} \text{Ra } 2^+$.
670.2 3	11/2-		A C	J ^{π} : 670.1, M1+E2 γ to 9/2 ⁻ ; systematics of 11/2 ⁻ states and shell model suggest configuration= ²¹⁶ Ra 2 ⁺ $\otimes \pi h_{0.7}$.
1146.6 4	$17/2^{-}$		AC	$\%\alpha \le 0.27 \ 4 \ (1985\text{De}14)$
				10780 15 α transition from 1147 and/or 1149 levels to ²¹³ Fr g.s. J ^{π} : 486.4, E2 γ to 13/2 ⁻ ; shell model and analogy to ²¹⁵ Fr, configuration= ²¹⁶ Ra 4 ⁺ $\otimes \pi h_{9/2}$.
1149.1 <i>3</i>	15/2-		A C	$\% \alpha \le 0.27 \ 4 \ (1985\text{De}14)$ 10780 <i>15</i> α transition from 1147 and/or 1149 levels to ²¹³ Fr g.s. J ^{π} : 489, M1(+E2) γ to 13/2 ⁻ ; 478.9, E2 γ to 11/2 ⁻ ; configuration= ²¹⁶ Ra 4 ⁺ $\otimes \pi h_{9/2}$.

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

²¹⁷Ac Levels (continued)

E(level) [†]	J^{π}	T _{1/2}	XREF	Comments
				E(level): note that 1983GoZX (also 1982GoZU) suggested this level at 1019 based on reversed ordering of the 349.0-478.9 γ cascade.
1498.1 4	$19/2^{-}$		AC	$\gamma_{1/2}$ see comment on nan-me for 1526 level. $\omega \propto 0.46 \ 13 \ (1985De14)$
1 19 011 7				11137 15 α (a doublet) from 1498 and/or 1528 levels to ²¹³ Fr g s
				I^{π} : 351.5 M1+F2 γ to 17/2 ⁻ : 349.0 F2 γ to 15/2 ⁻ : configuration= ²¹⁶ Ra 6 ⁺ $\otimes \pi h_{0.2}$
1528.4 5	$(21/2)^{-}$	<10 ns	AC	$\pi \approx 50.157$, $\pi = 1000$ (1985De14)
				11137 15 α (a doublet) from 1498 and/or 1528 levels to ²¹³ Fr g.s.
				J^{π} : 381.8, E2 γ to $17/2^-$; configuration= ²¹⁶ Ra 6 ⁺ $\otimes \pi h_{0/2}$ with some ²¹⁶ Ra
				$8^+ \otimes \pi f_{7/2}$ admixture suggested for the $21/2^-$ and $23/2^-$ states by 1985De14 from fast M1 transition between these levels.
				$T_{1/2}$; from $\gamma\gamma(t)$ (1985De14). Other: 8 ns 2 was measured by 1973No02 for the
				11130α from either the 1149 or 1528 level. No level with 8 ns half-life was found
				by 1985De14, but could not be definitely ruled out either by the authors.
1682.2 6	$(23/2)^{-}$	<10 ns	AC	J ^{π} : 153.8, M1+E2 γ to (21/2) ⁻ . Probable configuration= ²¹⁶ Ra 8 ⁺ $\otimes \pi h_{9/2}$. Fast M1
				transition to the $21/2^-$ and absence of an E2 transition to the $19/2^-$ state was interpreted by 1985De14 as being due to an admixture of 216 Ra $8^+ \otimes \pi f_{7/2}$
				$T_{\rm rest} from ag(t) (1085 De14)$
1702.2.6	$(25/2)^{-}$		٨	$I_{1/2}$. from $\gamma\gamma(t)$ (1903DC14). I^{π} : 110 M1 γ to (23/2) ⁻
101626	$(23/2)^{-}$		Δ	$J = 110, \text{ MI } y \text{ to } (23/2)^{-1}$
2012 2 7	$(29/2)^+$	740 ns 40	A	3 : 254, E27 (0 (25/2)). $\%\alpha = 4.51 18.\% (TT=95.49.18)$
2012.2 /	$(2\gamma/2)$	/ 10 113 /0		$\mu = +503.7 (1985\text{De}14.2014\text{St}ZZ)$
				μ : from g factor=+0.347 5 (1985De14), from time-differential perturbed α -angular distribution (α -TDPAD) technique. See also 1981MaXW from the same group
				$10541 L \alpha$ to an 1105 level in 213 Er (α in coincidence with 1105 α in 213 Er): 11137
				15α to a 498 level in ²¹³ Fr (α in coincidence with 498 γ in ²¹³ Fr); 11625 17 α
				10^{-17} Ff g.s. \overline{M}_{10} O G (\overline{E}_{1}^{1} / M2 s) to $(27/2)^{-1}$ 220 (M2 s) to $(25/2)^{-1}$ 1085 Do 14 proposed
				J: 90γ , $E1+W12\gamma$ to $(21/2)$; 220γ , $W12\gamma$ to $(25/2)$. $1985De14$ proposed
				configuration= $vg_{9/2} \otimes \pi i_{13/2}$ and calculated g=0.50 <i>I</i> by using the g factors of 0.21 and 1.19 for using and size a solution production by $g_{13/2} \otimes \pi i_{13/2}$
				-0.51 and 1.18 for $yg_{9/2}$ and $\pi i_{13/2}$ orbitals, respectively, measured for 213 Ac.
				$1_{1/2}$: from $\gamma(t)$ (1985) D (14). Other measurement: 400 fts 100 (1975) No02).

[†] From least-squares fit to $E\gamma$ data, assuming 0.3 keV uncertainty for each γ ray, except 1 keV when $E\gamma$ stated to nearest keV.

						Adopt	ed Levels, Gamma	as (continued))	
							$\gamma(^{217}\text{Ac})$			
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [†]	δ^{\dagger}	α #	$I_{(\gamma+ce)}$	Comments
660.2	13/2-	660.3	100	0.0	9/2-	E2		0.0218		$\alpha(K)=0.01544\ 22;\ \alpha(L)=0.00474\ 7;\ \alpha(M)=0.001198$
670.2	11/2-	670.1	100	0.0	9/2-	M1+E2		0.055 34		$\alpha(N)=0.000318 5; \alpha(O)=7.20\times10^{-5} 11;$ $\alpha(P)=1.252\times10^{-5} 18; \alpha(Q)=6.89\times10^{-7} 10$ $\alpha(K)=0.043 29; \alpha(L)=0.0088 43; \alpha(M)=0.00213 98$ $\alpha(N)=5.6\times10^{-4} 26; \alpha(O)=1.30\times10^{-4} 62;$ $\alpha(P)=2.4\times10^{-5} 12; \alpha(Q)=1.9\times10^{-6} 13$ α : value with uncertainty overlaps pure M1 and pure E2.
1146.6	17/2-	486.4	100	660.2	13/2-	E2 [‡]		0.0434		α (K)=0.0275 4; α (L)=0.01181 17; α (M)=0.00305 5 α (N)=0.000811 12; α (O)=0.000182 3; α (P)=3.08×10 ⁻⁵ 5; α (Q)=1.282×10 ⁻⁶ 18
1149.1	15/2-	478.9	100 25	670.2	11/2-	E2 [‡]		0.0450		$\alpha(K)=0.0283 4; \alpha(L)=0.01241 18; \alpha(M)=0.00321 5$ $\alpha(N)=0.000854 12; \alpha(O)=0.000191 3;$ $\alpha(N)=2.24\times10^{-5} 5; \alpha(O)=1.224\times10^{-6} 10$
		489	75 25	660.2	13/2-	M1(+E2)	<1	0.16 4		$\alpha(\mathbf{r}) = 5.24 \times 10^{-5}; \ \alpha(\mathbf{Q}) = 1.524 \times 10^{-19}$ $\alpha(\mathbf{K}) = 0.130 \ 35; \ \alpha(\mathbf{L}) = 0.026 \ 5; \ \alpha(\mathbf{M}) = 0.0062 \ 11$ $\alpha(\mathbf{N}) = 0.0016 \ 3; \ \alpha(\mathbf{O}) = 0.00038 \ 7; \ \alpha(\mathbf{P}) = 7.0 \times 10^{-5}$ $14; \ \alpha(\mathbf{Q}) = 5.8 \times 10^{-6} \ 16$
1498.1	19/2-	349.0	76 10	1149.1	15/2-	E2 [‡]		0.1028		$ \begin{aligned} &\alpha(\mathrm{K}) = 0.0529 \; 8; \; \alpha(\mathrm{L}) = 0.0369 \; 6; \; \alpha(\mathrm{M}) = 0.00975 \; 14 \\ &\alpha(\mathrm{N}) = 0.00259 \; 4; \; \alpha(\mathrm{O}) = 0.000576 \; 9; \\ &\alpha(\mathrm{P}) = 9.50 \times 10^{-5} \; 14; \; \alpha(\mathrm{Q}) = 2.62 \times 10^{-6} \; 4 \end{aligned} $
		351.5	100 10	1146.6	17/2-	M1+E2	+0.65 +20-10	0.38 5		$\alpha(K)=0.305; \alpha(L)=0.0635; \alpha(M)=0.015411$ $\alpha(N)=0.00413; \alpha(O)=0.000947; \alpha(P)=0.000171$ $14: \alpha(O)=134\times10^{-5}19$
1528.4	(21/2)-	(30.3 6)	0.9 1	1498.1	19/2-	[M1]		114 7	102 9	$ce(L)/(\gamma+ce)=0.75 \ 4; \ ce(M)/(\gamma+ce)=0.180 \ 15 \\ ce(N)/(\gamma+ce)=0.048 \ 5; \ ce(O)/(\gamma+ce)=0.0111 \ 10; \\ ce(P)/(\gamma+ce)=0.00206 \ 19; \ ce(Q)/(\gamma+ce)=0.000183 \\ 17 $
										α (L)=86 6; α (M)=20.7 <i>13</i> α (N)=5.5 4; α (O)=1.28 8; α (P)=0.236 <i>15</i> ; α (Q)=0.0210 <i>14</i> Transition was not observed. E γ is from the level
		381.8	100 11	1146.6	17/2-	E2 [‡]		0.0803		scheme. $\alpha(K)=0.0442\ 7;\ \alpha(L)=0.0267\ 4;\ \alpha(M)=0.00702\ 10$ $\alpha(N)=0.00187\ 3;\ \alpha(O)=0.000415\ 6;$
1682.2	(23/2)-	153.8	100	1528.4	(21/2)-	M1+E2	+0.39 8	4.57 18		$\alpha(P)=6.90\times10^{-5} \ 10; \ \alpha(Q)=2.15\times10^{-6} \ 3$ $\alpha(K)=3.52 \ 20; \ \alpha(L)=0.795 \ 20; \ \alpha(M)=0.195 \ 7$ $\alpha(N)=0.0518 \ 17; \ \alpha(O)=0.0119 \ 4; \ \alpha(P)=0.00214 \ 5; \ \alpha(O)=0.000161 \ 9$
1792.2	(25/2)-	110	100	1682.2	(23/2)-	M1(+E2)	<0.4	12.5 6		$\alpha(K) = 9.6 \ 8; \ \alpha(L) = 2.17 \ 22; \ \alpha(M) = 0.53 \ 7$ $\alpha(N) = 0.141 \ 17; \ \alpha(O) = 0.033 \ 4; \ \alpha(P) = 0.0059 \ 5;$ $\alpha(Q) = 0.00045 \ 4$

ω

L

Adopted Levels, Gammas (continued)										
γ ⁽²¹⁷ Ac) (continued)										
E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [†]	δ^{\dagger}	α #	Comments		
1916.2	(27/2)-	234	100	1682.2 (23/2	$(2)^{-}$ E2 [‡]		0.357 8	α (K)=0.1185 20; α (L)=0.175 4; α (M)=0.0472 11 α (N)=0.0126 3; α (O)=0.00276 7; α (P)=0.000445 10; α (Q)=6.66×10 ⁻⁶ 12		
2012.2	(29/2)+	96	50 10	1916.2 (27/2	2) ⁻ E1+M2	0.17 +5-6	2.0 12	B(E1)(W.u.)=1.4×10 ⁻⁸ 9; B(M2)(W.u.)=0.20 17 α (L)=1.44 87; α (M)=0.39 24 α (N)=0.105 64; α (Q)=0.024 15; α (P)=0.0043 27; α (Q)=3.2×10 ⁻⁴ 20		
		220	100 20	1792.2 (25/2	2) ⁻ M2		7.62 17	B(M2)(W.u.)=0.21 6 $\alpha(K)=5.31$ 11; $\alpha(L)=1.72$ 4; $\alpha(M)=0.444$ 10 $\alpha(N)=0.120$ 3; $\alpha(O)=0.0277$ 7; $\alpha(P)=0.00501$ 12; $\alpha(Q)=0.000403$ 9 Mult.: small E3 admixture is not excluded.		

[†] From ²¹⁷Ac IT decay (740 ns). [‡] From ce data as well as $\gamma(\theta)$ data, M1 admixture is possible, however, based on the level scheme, mult=E2 is required.

[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

From ENSDF

Adopted Levels, Gammas

Legend

Level Scheme

 $^{217}_{\ 89}{\rm Ac}_{128}$