Adopted Levels, Gammas

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Sc. Wu	NDS 108,1057 (2007)	1-Mar-2007

 $Q(\beta^{-}) = -4853 \ 14$; $S(n) = 7314 \ 12$; $S(p) = 4316 \ 12$; $Q(\alpha) = 9526 \ 9$ 2012Wa38 Note: Current evaluation has used the following Q record -4832 28 7314 11 4316 11 9526 8 2003Au03.

Calculations, compilations, systematics: Cluster model for α decay, Geiger-Nuttall plot: 1991Bu05. Equilibrium deformation energy: 1988So08. Octupole deformation: 1989Eg02. Proton-neutron interaction energy: 1990Mo11. Quasi-bands in even-even nuclei: 1984Sa37.

Super- and hyperdeformed configurations: 1995We02.

²¹⁶Ra Levels

For proposed configurations for ²¹⁶Ra levels, see 1983It01, 1985Ad09, 1990Sc29 and 1991Dr08. See (HI,xn γ) for a tabulation of α branches from excited states of ²¹⁶Ra.

Cross Reference (XREF) Flags

²²⁰Th α decay A В

 $(HI,xn\gamma)$

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	XREF	Comments	
0	0+	182 ns 10	AB	$\% \alpha = 100; \ \% \varepsilon < 1 \times 10^{-8}$ T _{1/2} : from 1973No09. Other: <1 ms (1961Gr43).	
				$\%\varepsilon$: from log $ft>3.6$, $\%\varepsilon<1.2\times10^{-6}$ for the g.s. branch, and is smaller for possible branches to the excited states.	
688.20 20	2+		В		
1164.1 <i>3</i>	4+		В	$\% \alpha = 0.23$	
1507.6 <i>3</i>	6+	<0.2 ns	В	$\% \alpha = 0.58$	
1711.1 4	8+	1.42 ns 20	В	$\%\alpha = 1.86$ $\mu = +3.2, 32, (2005St24)$	
2026.0 4	10^{+}	0.6 ns 1	В	$\%\alpha = 0.12$	
				$\mu = +1.0.20$	
				μ : from g-factor=+0.1 2 (1990Sc29).	
2335.2 4	11-		В		
2679.4 4	13-	0.96 ns 20	В	$\mu = -1.3\ 26$	
				μ : from g-factor=-0.1 2 (1990Sc29).	
3292.7 5	14+		В		
3412.7? 5			В		
3491.6 5	16+		В		
3580.7?			В		
3582.1 5	16+		В		
3712.1 5	18^{+}		В		
3763.5 5	19-	5.34 ns 15	В	μ =9.7 (2005St24,1985Ad09) J ^{π} : stretched E1 γ to 18 ⁺ . No γ to 16 ⁺ . μ : from g-factor=0.51 3 (1985Ad09); other: g-factor=0.49 5 (1990Sc29).	
4320.4 6	$(20)^{-}$		В	J^{π} : M1+E2 γ to 19 ⁻ . No γ to $\leq 18^+$.	
4719.0 6	$(21)^{-}$		В	J^{π} : M1+E2 γ to (20) ⁻ . No γ to $\leq 19^{-}$.	
4977.0 7	(23)-		В	J^{π} : stretched E2 γ to (21) ⁻ .	

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

²¹⁶Ra Levels (continued)

E(level) [†]	$T_{1/2}^{\#}$	XREF	Comments
5170.5 7	6.6 ns <i>3</i>	В	 g-factor=0.63 6 (2005St24,1985Ad09); other: 0.7 2 (1990Sc29). J^π: 1983It01 suggest 25⁻ on the basis of theoretical estimates of the expected energy of the configuration=((²¹⁴Ra 17⁻)(ν 2g_{9/2})⁺²₈₊). Measured g-factor agrees with this assignment (1985Ad09). g-factor also agrees with J^π=24⁺, but not with 24⁻ (see 1985Ad09). T_{1/2}: from 557γ(t) (1983It01). The 399, 258 and 194γ's are also delayed with this half-life.
5471.3 8		В	
5832.5 8		В	
6266.1 9		В	

 † From a least-squares fit to the Ey in (HI,xny).

[±] From $\gamma(\theta)$ and γ multipolarities, the transitions up to the 3712 level are stretched E2's (except E1 for the 309 γ and 613 γ from the 2335 and 3292 levels, respectively).

[#] From (HI,xn γ), except as noted.

$\gamma(^{216}\text{Ra})$

All γ data are from (HI,xn γ).

E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}	E_f	J_f^π	Mult.	α^{\dagger}	Comments
688.20	2+	688.2 2	100	0	0^{+}	E2	0.0190	
1164.1	4+	475.9 2	100	688.20	2^{+}	E2	0.0435	
1507.6	6+	343.5 1	100	1164.1	4+	E2	0.1023	B(E2)(W.u.)>7.0
1711.1	8+	203.5 1	100	1507.6	6+	E2	0.549	B(E2)(W.u.)=9.6 14
2026.0	10^{+}	314.9 <i>1</i>	100	1711.1	8+	E2	0.1316	B(E2)(W.u.)=3.5 6
2335.2	11-	309.2 1	100	2026.0	10^{+}	E1	0.0329	
2679.4	13-	344.2 1	100	2335.2	11-	E2	0.1017	B(E2)(W.u.)=1.4 3
3292.7	14^{+}	613.3 2	100	2679.4	13-	E1	0.00787	
3412.7?		120.1 [‡] 2	100	3292.7	14^{+}	D		
3491.6	16+	198.9 <i>1</i>	100	3292.7	14^{+}	E2	0.597	
3580.7?		168 [‡]	100	3412.7?				
3582.1	16+	289.5 2	100	3292.7	14^{+}	E2	0.1696	
3712.1	18^{+}	130.4 5	23 6	3582.1	16^{+}			
		220.4 2	100 13	3491.6	16+	E2	0.415	
3763.5	19-	51.4 <i>I</i>	100	3712.1	18^{+}	E1	0.650	B(E1)(W.u.)=0.000156 5
4320.4	$(20)^{-}$	556.9 <i>3</i>	100	3763.5	19-	M1+E2	0.08 6	
4719.0	$(21)^{-}$	398.6 2	100	4320.4	$(20)^{-}$	M1+E2	0.20 13	
4977.0	$(23)^{-}$	258.0 2	100	4719.0	$(21)^{-}$	E2	0.244	
5170.5		193.5 2	100	4977.0	$(23)^{-}$	[E2]	0.660	B(E2)(W.u.)=2.47 12
5471.3		300.8 <i>3</i>	100	5170.5		(D+Q)		
5832.5		361.2 2	100	5471.3		(D+Q)		
6266.1		433.6 5	100	5832.5		(D+Q)		

[†] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[‡] Placement of transition in the level scheme is uncertain.

²¹⁶₈₈Ra₁₂₈