$^{220}{\rm Th}~\alpha$ decay

	History				
Туре	Author	Citation	Literature Cutoff Date		
Full Evaluation	Sc. Wu	NDS 108, 1057 (2007)	1-Mar-2007		

Parent: ²²⁰Th: E=0.0; $J^{\pi}=0^+$; $T_{1/2}=9.7 \ \mu s \ 6$; $Q(\alpha)=8953 \ 20$; % $\alpha \ decay=100.0$

 $T_{1/2}(^{220}\text{Th})=9.7 \ \mu\text{s} \ 6$, measured by 1973Ha32, is adopted by 1997Ar04 and used in calculations here. The half-life, $T_{1/2}=12 \ \mu\text{s} +4-3$, measured by 1991An13, agrees with the one adopted here.

 $\%\alpha(^{220}\text{Th})=100$ from the β decay branch of $2\times10^{-7}\%$, estimated by 1997Ar04 from the gross β -decay calculations of 1973Ta30. The partial half-life of $^{220}\text{Th}\beta^+$ decay has been calculated by 1997Mo25 as >100 s.

²¹⁶Ra Levels

 α radiations

E(level)	\mathbf{J}^{π}		
0.0	0^+		

Eα	E(level)	HF^{\dagger}	Comments
8790 20	0.0	1.0	 Eα: measured by 1973Ha32. Iα: only one α group has been observed. Intensity of an unobserved 8115-keV α to the 2⁺ state at 688.2 keV is calculated to be ≤1.4% by assuming its hindrance factor to be ≥1.0. Iα(8790α to g.s.)=99.3% 7 is used in computation.

[†] $r_0(^{216}\text{Ra})=1.566~9$ from HF(8790 α)=1.0 (1998Ak04).