208 Pb(11 B,3n γ) 1990De12

History										
Type Author		Citation	Literature Cutoff Date							
Full Evaluation	Sc. Wu	NDS 108, 1057 (2007)	1-Mar-2007							

E=53-74 MeV; measured: α and γ excit, ce, $\gamma\gamma$, γ (t), DCO ratios.

²¹⁶Fr Levels

E(level) [†]	$J^{\pi \ddagger}$	Comments
x#	(9-)	J^{π} : from syst.
527.70+x [#] 20	(11^{-})	
762.6+x [@] 3	(12^{+})	
969.4+x [#] 3	(13-)	
1261.1+x [@] 3	(14^{+})	
1383.2+x [#] 3	(15 ⁻)	
1659.9+x [@] 4	(16 ⁺)	
1834.8+x [#] 4	(17^{-})	
1973.0+x [@] 4	(18^{+})	

[†] From least squares fit to $E\gamma$; the uncertainty does not include the uncertainty in the energy of the bandhead.

[‡] Based on E1 and E2 character of deexciting transitions, band structure, unless otherwise noted. Although the relative J and π are well established, $J^{\pi} = (9^{-})$ for the bandhead is based on syst.

Band(A): π =- band. @ Band(B): π =+ band.

$\gamma(^{216}\mathrm{Fr})$

Eγ	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	α &	Comments
121.9 2	2.2 4	1383.2+x	(15 ⁻)	1261.1+x	(14 ⁺)	E1 [@]	0.293	$\alpha(K)=0.229 \ 4; \ \alpha(L)=0.0481 \ 7; \ \alpha(M)=0.01154 \ 17; \\ \alpha(N+)=0.00372 \ 6 \\ \alpha(N)=0.00299 \ 5; \ \alpha(O)=0.000640 \ 10; \\ \alpha(P)=9.27\times10^{-5} \ 14; \ \alpha(Q)=3.56\times10^{-6} \ 6 $
138.2 2	1.7 5	1973.0+x	(18+)	1834.8+x	(17 ⁻)	E1 [@]	0.216	$\begin{aligned} &\alpha(\text{K}) = 0.1701 \ 25; \ \alpha(\text{L}) = 0.0347 \ 5; \ \alpha(\text{M}) = 0.00830 \\ &12; \ \alpha(\text{N}+) = 0.00268 \ 4 \\ &\alpha(\text{N}) = 0.00215 \ 4; \ \alpha(\text{O}) = 0.000462 \ 7; \\ &\alpha(\text{P}) = 6.76 \times 10^{-5} \ 10; \ \alpha(\text{Q}) = 2.68 \times 10^{-6} \ 4 \end{aligned}$
175.2 2	5.9 6	1834.8+x	(17 ⁻)	1659.9+x	(16 ⁺)	E1 [@]	0.1212	$\alpha(K)=0.0965 \ 14; \ \alpha(L)=0.0188 \ 3; \ \alpha(M)=0.00449 7; \ \alpha(N+)=0.001454 \ 21 \alpha(N)=0.001163 \ 17; \ \alpha(O)=0.000252 \ 4; \alpha(P)=3.74\times10^{-5} \ 6; \ \alpha(O)=1.567\times10^{-6} \ 23$
206.7 2	8.8 7	969.4+x	(13 ⁻)	762.6+x	(12+)	E1 [@]	0.0815	$\alpha(K)=0.0652 \ 10; \ \alpha(L)=0.01236 \ 18;$ $\alpha(M)=0.00295 \ 5; \ \alpha(N+)=0.000957 \ 14$ $\alpha(N)=0.000765 \ 11; \ \alpha(O)=0.0001663 \ 24;$ $\alpha(P)=2.49\times10^{-5} \ 4; \ \alpha(O)=1.083\times10^{-6} \ 16$
235.0 2	38 # <i>3</i>	762.6+x	(12+)	527.70+x	(11-)	E1	0.0601	$\alpha(K)=0.0483$ 7; $\alpha(L)=0.00899$ 13; $\alpha(M)=0.00214$ 3; $\alpha(N+)=0.000696$ 10 $\alpha(N)=0.000556$ 8; $\alpha(O)=0.0001211$ 18; $\alpha(P)=1.83\times10^{-5}$ 3; $\alpha(Q)=8.15\times10^{-7}$ 12
276.8 2	21 2	1659.9+x	(16 ⁺)	1383.2+x	(15 ⁻)	E1	0.0411	Mult.: $\alpha(L)\exp=0.009$ 2. $\alpha(K)=0.0331$ 5; $\alpha(L)=0.00604$ 9; $\alpha(M)=0.001434$ 21; $\alpha(N+)=0.000467$ 7

Continued on next page (footnotes at end of table)

208 **Pb**(11 **B.3n** γ) 1990De12 (continued) γ ⁽²¹⁶Fr) (continued) α**&** I_{γ}^{\dagger} Comments Eγ E_i(level) \mathbf{J}_i^{π} \mathbf{E}_{f} \mathbf{J}_{f}^{π} Mult. α (N)=0.000373 6; α (O)=8.15×10⁻⁵ 12; $\alpha(P)=1.241\times10^{-5}$ 18; $\alpha(Q)=5.71\times10^{-7}$ 8 Mult.: $\alpha(K) \exp = 0.018 \ 10$. 13.7[#] 9 $\alpha(K)=0.0295 5; \alpha(L)=0.00533 8;$ 291.5 2 1261.1+x 0.0365 (14^{+}) 969.4+x (13^{-}) E1 α (M)=0.001267 18; α (N+..)=0.000413 6 α (N)=0.000329 5; α (O)=7.21×10⁻⁵ 11; $\alpha(P)=1.100\times10^{-5}$ 16; $\alpha(Q)=5.11\times10^{-7}$ 8 Mult.: $\alpha(K) \exp = 0.030 \ 6, \ \alpha(L) \exp = 0.006 \ 2.$ 1659.9+x (16⁺) 0.1276 $\alpha(K)=0.0639 \ \hat{9}; \ \alpha(L)=0.0472 \ 7;$ 313.0 2 7.3 8 1973.0+x (18^{+}) E2 $\alpha(M)=0.01244$ 18; $\alpha(N+..)=0.00405$ 6 α (N)=0.00326 5; α (O)=0.000690 10; $\alpha(P)=9.48\times10^{-5}$ 14; $\alpha(Q)=1.535\times10^{-6}$ 22 Mult.: $\alpha(K) \exp = 0.14$ 6. E2[@] $\alpha(K)=0.0385$ 6; $\alpha(L)=0.0196$ 3; 398.9 2 7.99 1659.9 + x1261.1 + x (14⁺) 0.0648 (16^{+}) $\alpha(M)=0.00509 8; \alpha(N+..)=0.001660 24$ $\alpha(N)=0.001335\ 19;\ \alpha(O)=0.000284\ 4;$ $\alpha(P)=4.01\times10^{-5}$ 6; $\alpha(Q)=8.96\times10^{-7}$ 13 E2[@] 0.0588 $\alpha(K)=0.0357$ 5; $\alpha(L)=0.01726$ 25; 414.0 2 45 4 1383.2+x (15^{-}) 969.4+x (13^{-}) α(M)=0.00447 7; α(N+..)=0.001458 21 $\alpha(N)=0.001172 \ 17; \ \alpha(O)=0.000250 \ 4;$ $\alpha(P)=3.54\times10^{-5}$ 5; $\alpha(Q)=8.27\times10^{-7}$ 12 0.0499 $\alpha(K)=0.0313$ 5; $\alpha(L)=0.01389$ 20; 441.62 728 969.4+x (13^{-}) $527.70 + x (11^{-})$ E2 α(M)=0.00358 5; α(N+..)=0.001169 17 α (N)=0.000939 *14*; α (O)=0.000201 *3*; $\alpha(P)=2.86\times10^{-5}$ 4; $\alpha(Q)=7.20\times10^{-7}$ 11 Mult.: $\alpha(K) \exp = 0.039 \ 9$. 6.2[#] 9 $\alpha(K)=0.0299$ 5; $\alpha(L)=0.01293$ 19; 451.3 2 1834.8+x (17^{-}) 1383.2+x (15⁻) [E2] 0.0473 $\alpha(M)=0.003335; \alpha(N+..)=0.00108716$ α (N)=0.000873 13; α (O)=0.000187 3; $\alpha(P)=2.67\times10^{-5}$ 4; $\alpha(Q)=6.88\times10^{-7}$ 10 $\alpha(K)=0.0245$ 4; $\alpha(L)=0.00939$ 14; 498.62 52 6 1261.1 + x (14^{+}) 762.6+x (12^+) E2 0.0371 $\alpha(M)=0.00240$ 4; $\alpha(N+..)=0.000784$ 11 $\alpha(N)=0.000629 9; \alpha(O)=0.0001351 19;$ $\alpha(P)=1.95\times10^{-5}$ 3; $\alpha(Q)=5.58\times10^{-7}$ 8 Mult.: $\alpha(K) \exp (0.030 \ 15, \alpha(L)) \exp (0.012 \ 6.012)$ 527.7 2 100 6 527.70+x (9^{-}) E2 0.0325 $\alpha(K)=0.0220 \ 3; \ \alpha(L)=0.00787 \ 11;$ (11^{-}) х $\alpha(M)=0.00200 \ 3; \ \alpha(N+..)=0.000655 \ 10$ α (N)=0.000525 8; α (O)=0.0001130 16; $\alpha(P)=1.642\times10^{-5}\ 23;\ \alpha(Q)=4.96\times10^{-7}\ 7$ Mult.: $\alpha(K)$ exp=0.044 10.

[†] Relative I γ .

[‡] Based on DCO and/or $\alpha(K)$ exp, $\alpha(L)$ exp.

[#] Contaminated line, intensity deduced from coin spectra.

[@] D or Q from DCO. D transitions are E1 from level scheme, Q transition are assumed to be E2.

[&] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ-ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

 $^{216}_{87}\mathrm{Fr}_{129}$

²⁰⁸Pb(¹¹B,3nγ) 1990De12

