²²⁰Fr α decay 1996Sh05,1968Ba73

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Sc. Wu	NDS 108,1057 (2007)	1-Mar-2007

Parent: ²²⁰Fr: E=0; $J^{\pi}=1^+$; $T_{1/2}=27.4$ s 3; $Q(\alpha)=6800.7$ 19; % α decay=99.65 5

1996Sh05: Radioactivity of ²²⁰Fr (from 224Ac(α -decay), produced by Th(p,X), E=200 MeV); ISOCLEL separator; Ge detectors; measured E α , I α , E γ , I γ , $\alpha\gamma$, α (ce).

1974Ho27, 1968Ba73: measured Eα, Iα. 1970Br29: measured γ, γγ. Others: 1964Br16, 1964Mc21.

²¹⁶At Levels

The level scheme is that proposed by 1996Sh05 and based on their measurements of E γ , I γ and $\alpha\gamma$; on E α and I α of 1968Ba73; and on $\gamma\gamma$ of 1970Br29. The level configurations are from 1996Sh05.

E(level) [†]	J ^{π‡}	Comments
0@	1-	
44.59 [@] 4	(2)-	
57.11 [@] 15	$(4)^{-}$	Possible isomeric level which undergoes direct α decay to ²¹² Bi (1996Sh05).
105.89 [@] 5	$(0)^{-}$	
122.0 [@] 2	(5)-	
153.4 ^{&} 1	$(2)^{-}$	
160.73 ^{&} 5	$(1)^{-}$	
169.3 [@] 1	(3 ⁻)	
199.2 ^{&} 2	(3)-	
208.0 1	$(1,2)^{-}$	
234.6 2	$(1,2^{-})$	
23+.0+	$(4)^{-}$	
302.8.2	(1.2^{-})	
317 [#] 3	(-,-)	
381.1 2	$(2^{-}, 3^{-})$	
421.5 4		
479.3?		
[†] From leas [‡] From Ado [#] From $E\alpha$.	t squares f pted Leve	it to $E\gamma$. Is.

[@] Band(A): Configuration= $((\pi h_{9/2})^{+3}(\nu g_{9/2})^{+5})$.

[&] Band(B): Configuration= $((\pi h_{9/2})^{+3}(\nu g_{9/2})^{+4}(\nu i_{11/2})) + ((\pi h_{9/2})^{+2}(\pi f_{7/2})(\nu g_{9/2})^{+5}).$

α radiations

$E\alpha^{\dagger}$	E(level)	$\mathrm{I}\alpha^{\ddagger\&}$	HF [@]
6260	421.5	< 0.005	>2560
6303.1 <i>30</i>	381.1	0.015	1278
6363.9 25	317	0.01	3536
6378.2 20	302.8	0.35	116

Continued on next page (footnotes at end of table)

From ENSDF

²²⁰ Fr α decay	1996Sh05,1968Ba73	(continued)
---	-------------------	-------------

α radiations (continued)

$E\alpha^{\dagger}$	E(level)	Ια ‡&	HF [@]	$E\alpha^{\dagger}$	E(level)	Ια ‡&	HF [@]	$E\alpha^{\dagger}$	E(level)	Ια ^{‡&}	HF [@]
6402.1 20	278.2	1.25	41	6508.6 25	169.3	0.6	233	6620 [#] 3	57.11	1.6	240
6427.6 20	254.8	0.24	264	6516.5 25	160.73	3.0	50	6633 [#] 4	44.59	12.2	35
6444.8 25	234.6	≈0.01	≈7658	6524.2 25	153.4	2.5	65	6677 [#] 4	0	66	9.6
6471.5 25	208.0	1.3	75	6555	122.0	< 0.6	>353				
6480.1 25	199.2	0.6	177	6573 [#] 4	105.89	9.0	28				

[†] From 1968Ba73, except where noted otherwise. Authors' values have been increased by 1.5 keV to correct for more recent values of calibration energies (1991Ry01). Others: 1964Br16, 1964Mc21, 1974Ho27.

[‡] From 1996Sh05 (corrected values of 1968Ba73, priv. comm. from C.F. Liang).

[#] From 1991Ry01, based on measurements of 1968Ba73 and 1974Ho27. [@] $r_0(^{216}At)=1.553 \ 3$, unweighted average of $r_0(^{214}Po)=1.559 \ 8$, $r_0(^{216}Po)=1.5555 \ 2$, $r_0(^{216}Rn)=1.554 \ 6$ and $r_0(^{218}Rn)=1.5446 \ 19$.

[&] For absolute intensity per 100 decays, multiply by 0.9965 5.

 $\gamma(^{216}\text{At})$

All γ data are from 1996Sh05.

 $I_{\gamma}(K \text{ x ray At})=82.5 \text{ per } 1000 \alpha$ (1996Sh05). If all the observed γ 's above the K-shell binding energy are M1, yielding the largest possible number of K x ray, the evaluator obtained total I(K x ray)=68 2 per 1000 α 's.

Eγ	$I_{\gamma}^{\dagger \ddagger}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.	α #	Comments
x34.6 2	0.07 2							
44.60 5	5.6 2	44.59	(2) ⁻	0	1-	M1	24.6	α (L)=18.7 3; α (M)=4.44 7; α (N+)=1.430 21 α (N)=1.150 17; α (O)=0.246 4; α (P)=0.0340 5 Mult.: α (L)exp=20 4.
(45.8)		199.2	$(3)^{-}$	153.4	$(2)^{-}$			
(47.3)		208.0	$(1,2)^{-}$	160.73	$(1)^{-}$			
54.8 1	0.15 5	160.73	(1)-	105.89	(0)-	[M1]	13.43	α (L)=10.22 <i>16</i> ; α (M)=2.42 <i>4</i> ; α (N+)=0.781 <i>12</i> α (N)=0.628 <i>10</i> ; α (O)=0.1344 <i>21</i> ; α (P)=0.0186 <i>3</i>
61.3 <i>I</i>	0.7 1	105.89	(0) ⁻	44.59	(2)-	E2	76.3	α (L)=56.4 9; α (M)=15.10 25; α (N+)=4.73 8 α (N)=3.89 7; α (O)=0.761 13; α (P)=0.0757 13 Mult : α (L 23)exp=54 15
64.9 <i>1</i>	0.5 1	122.0	(5)-	57.11	(4)-	M1	8.18	$\alpha(L)=6.23 \ 10; \ \alpha(M)=1.476 \ 22; \ \alpha(N+)=0.476 \ 7 \\ \alpha(N)=0.382 \ 6; \ \alpha(O)=0.0819 \ 12; \ \alpha(P)=0.01131 \\ 17 \\ N \ k = (L) = 11.4$
x75 7 1	031							Mult.: $\alpha(L) \exp[11 4]$.
$06.4^{(0)}$	<0.5 1	152 /	$(2)^{-}$	57 11	$(4)^{-}$	(E2)	0.00	$\alpha(\mathbf{L}) = 6.62; \ \alpha(\mathbf{M}) = 1.77; \ \alpha(\mathbf{N} + \mathbf{L}) = 0.608$
90.4	<0.4	133.4	(2)	37.11	(4)	(E2)	9.00	$\alpha(L)=0.02; \alpha(M)=1.77; \alpha(N+)=0.008$ Mult.: $\alpha(L)\exp>3.0.$
105.88 5	3.0 2	105.89	(0)-	0	1-	M1	10.27	$\begin{array}{l} \alpha(\mathrm{K}) = 8.30 \ 12; \ \alpha(\mathrm{L}) = 1.502 \ 22; \ \alpha(\mathrm{M}) = 0.356 \ 5; \\ \alpha(\mathrm{N}+) = 0.1146 \ 17 \\ \alpha(\mathrm{N}) = 0.0921 \ 13; \ \alpha(\mathrm{O}) = 0.0197 \ 3; \ \alpha(\mathrm{P}) = 0.00272 \end{array}$
								4 M H (1) 102
108.8 <i>1</i>	0.45 6	153.4	(2)-	44.59	(2)-	M1	9.51	Mult.: α (L)exp=1.8 3. α (K)=7.69 11; α (L)=1.388 20; α (M)=0.329 5; α (N+)=0.1059 15
112.1 2	0.05 2	169.3	(3-)	57.11	(4)-	[M1+E2]	6.8 20	$\begin{array}{l} \alpha(\mathrm{N}) = 0.0852 \ 13; \ \alpha(\mathrm{O}) = 0.0182 \ 3; \ \alpha(\mathrm{P}) = 0.00252 \\ 4 \\ \mathrm{Mult.:} \ \alpha(\mathrm{L}) = 1.5 \ 5. \\ \alpha(\mathrm{K}) = 4 \ 4; \ \alpha(\mathrm{L}) = 2.3 \ 10; \ \alpha(\mathrm{M}) = 0.6 \ 3; \\ \alpha(\mathrm{N} +) = 0.18 \ 9 \\ \alpha(\mathrm{N}) = 0.15 \ 8; \ \alpha(\mathrm{O}) = 0.030 \ 14; \ \alpha(\mathrm{P}) = 0.0034 \ 11 \end{array}$

Continued on next page (footnotes at end of table)

				220 Fr α	decay	1996Sh05,	1968Ba73	(continued)
						$\gamma(^{216}\text{At})$ (con	tinued)	
Eγ	$I_{\gamma}^{\dagger\ddagger}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.	α #	Comments
116.2 <i>I</i>	0.35 5	160.73	(1)-	44.59	(2) ⁻	M1	7.88	$\alpha(K)=6.38 \ 9; \ \alpha(L)=1.148 \ 17; \ \alpha(M)=0.272 \ 4; \\ \alpha(N+)=0.0876 \ 13 \\ \alpha(N)=0.0705 \ 10; \ \alpha(O)=0.01509 \ 22; \\ \alpha(P)=0.00208 \ 3 \\ Mult.; \ \alpha(K)exp=14 \ 5.$
124.7 <i>1</i>	0.70 6	169.3	(3-)	44.59	(2)-	[M1+E2]	4.7 17	$\alpha(\mathbf{K})=2.8\ 25;\ \alpha(\mathbf{L})=1.5\ 6;\ \alpha(\mathbf{M})=0.38\ 16;\alpha(\mathbf{N}+)=0.12\ 5\alpha(\mathbf{N})=0.10\ 4;\ \alpha(\mathbf{Q})=0.020\ 8;\ \alpha(\mathbf{P})=0.0022\ 6$
128.7 2 132.8 3 ^x 138.3 2 ^x 139 7 1	0.12 <i>4</i> 0.07 <i>3</i> 0.23 <i>5</i> 0.31 5	234.6 254.8	(1,2 ⁻)	105.89 122.0	$(0)^{-}$ (5) ⁻			
142.1 1	0.8 1	199.2	(3)-	57.11	(4) ⁻	M1	4.45	$\alpha(K)=3.60\ 5;\ \alpha(L)=0.645\ 10;\ \alpha(M)=0.1527\ 22;\ \alpha(N+)=0.0492\ 7$ $\alpha(N)=0.0396\ 6;\ \alpha(O)=0.00847\ 12;\ \alpha(P)=0.001170\ 17$ Mult: $\alpha(K)=p=7.0\ 23.$
153.4 1	2.6 2	153.4	(2)-	0	1-	M1	3.58	$\alpha(K)=2.90 \ 4; \ \alpha(L)=0.518 \ 8; \ \alpha(M)=0.1227 \ 18; \\ \alpha(N+)=0.0395 \ 6 \\ \alpha(N)=0.0318 \ 5; \ \alpha(O)=0.00681 \ 10; \\ \alpha(P)=0.000940 \ 14 \\ Mult.: \ \alpha(K)exp=4.2 \ 8.$
154.5 3	0.4 1	199.2	(3)-	44.59	(2) ⁻	M1	3.51	$\alpha(K)=2.845; \alpha(L)=0.5088; \alpha(M)=0.120319; \alpha(N+)=0.03876 $ $\alpha(N)=0.03125; \alpha(O)=0.0066710; \alpha(P)=0.0092114 $ Mult: $\alpha(K)$ exp=4.512.
156.1 <i>1</i>	1.1 2	278.2	(4) ⁻	122.0	(5) ⁻	M1	3.41	$\alpha(K)=2.76$ 4; $\alpha(L)=0.493$ 7; $\alpha(M)=0.1168$ 17; $\alpha(N+)=0.0376$ 6 $\alpha(N)=0.0303$ 5; $\alpha(O)=0.00648$ 10; $\alpha(P)=0.000895$ 13 Mult : $\alpha(K)=xp=4$ 4 10
160.73 5	3.8 2	160.73	(1) ⁻	0	1-	M1	3.14	$\alpha(K) = 2.54 \ 4; \ \alpha(L) = 0.454 \ 7; \ \alpha(M) = 0.1075 \ 15; \\ \alpha(N+) = 0.0346 \ 5 \\ \alpha(N) = 0.0278 \ 4; \ \alpha(O) = 0.00596 \ 9; \\ \alpha(P) = 0.000823 \ 12 \\ Mult : \ \alpha(K) = xp = 3.8 \ 7 \\ \end{cases}$
163.4 <i>1</i>	1.8 2	208.0	(1,2)-	44.59	(2)-	M1	2.99	$\alpha(K) = 2.42 \ 4; \ \alpha(L) = 0.433 \ 7; \ \alpha(M) = 0.1025 \ 15; \alpha(N+) = 0.0330 \ 5 \alpha(N) = 0.0266 \ 4; \ \alpha(O) = 0.00569 \ 8; \alpha(P) = 0.000786 \ 11 Mult: \ \alpha(K) exp = 2.7 \ 5.$
173.0 <i>3</i> 182.1 <i>4</i> 196.9 <i>2</i> 208 0 <i>4</i>	$\begin{array}{c} 0.06 \ 3 \\ 0.05 \ 2 \\ 0.20 \ 5 \\ 0.07 \ 3 \end{array}$	381.1 381.1 302.8 208.0	$(2^{-},3^{-})$ $(2^{-},3^{-})$ $(1,2^{-})$ $(1,2)^{-}$	208.0 199.2 105.89	$(1,2)^{-}$ $(3)^{-}$ $(0)^{-}$ 1^{-}	[M1+F2]	106	$\alpha(K) = 0.7.6; \alpha(L) = 0.213.7; \alpha(M) = 0.0535.19;$
200.0 7	0.07 0	200.0	(1,2)	0		[1.0 0	$\alpha(N+)=0.0170\ 5$ $\alpha(N)=0.0138\ 5;\ \alpha(O)=0.00285\ 6;\ \alpha(P)=0.00035$ 5
^x 218.6 <i>4</i> 221.1 <i>3</i>	0.10 <i>3</i> 0.20 <i>5</i>	278.2	(4) ⁻	57.11	(4) ⁻	[M1+E2]	0.8 5	α (K)=0.6 5; α (L)=0.173 <i>13</i> ; α (M)=0.0431 <i>9</i> ; α (N+)=0.0137 <i>4</i> α (N)=0.01116 <i>23</i> ; α (O)=0.00230 <i>13</i> ; α (P)=0.00028 <i>6</i>
x222.2 5 233.6 2	0.08 <i>3</i> 0.35 <i>6</i>	278.2	(4)-	44.59	(2)-	[E2]	0.291	$\alpha(K)=0.1183 \ 17; \ \alpha(L)=0.1281 \ 19; \ \alpha(M)=0.0339$

Continued on next page (footnotes at end of table)

			22	20 Fr α de	ecay	1996Sh05,1968Ba73 (continued)
					γ	(²¹⁶ At) (continued)
Eγ	$I_{\gamma}^{\dagger\ddagger}$	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_f^{π}	Comments
						5; α (N+)=0.01068 <i>16</i> α (N)=0.00875 <i>13</i> ; α (O)=0.00174 <i>3</i> ; α (P)=0.000186 <i>3</i>
x242.0 3	0.09 3					
258.2 2	0.48 10	302.8	$(1,2^{-})$	44.59	$(2)^{-}$	
260.5 5	0.07 3	421.5		160.73	$(1)^{-}$	
268.3 4	0.09 3	421.5		153.4	$(2)^{-}$	
302.7 4	0.30 5	302.8	$(1,2^{-})$	0	1-	
318.6 [@] 4	0.25 5	479.3?		160.73	$(1)^{-}$	
323.9 7	0.10 3	381.1	$(2^{-},3^{-})$	57.11	$(4)^{-}$	
x336.0 10	0.05 2					
381.0 5	0.32 5	381.1	$(2^{-},3^{-})$	0	1-	
^x 410.0 10	0.05 2					

[†] I γ per 1000 α 's.

[‡] For absolute intensity per 100 decays, multiply by 9.965×10^{-2} 5.

[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[@] Placement of transition in the level scheme is uncertain. ^x γ ray not placed in level scheme.

²²⁰Fr α decay 1996Sh05,1968Ba73

 $^{216}_{\ 85}{\rm At}_{131}$