Adopted Levels, Gammas

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	S. Kumar, B. Singh, K. Rojeeta Devi, A. Rohilla	NDS 114, 2023 (2013)	23-Sep-2013

 $Q(\beta^{-})=-3497 \ 15$; $S(n)=5630 \ 9$; $S(p)=3797 \ 11$; $Q(\alpha)=8864 \ 3$ 2012Wa38 $S(2n)=13967 \ 22$, $S(2p)=6346 \ 9 \ (2012Wa38)$.

²¹⁵Ra evaluated by S. Kumar, B. Singh, K. Rojeeta Devi, A. Rohilla.

²¹⁵Ra identified (1961Gr43,1962Gr20) in excitation function measurements in ²⁰⁹Bi(¹¹B,5n)²¹⁵Ra reaction. 1968Va18 identified ²¹⁵Ra as descendent of ²¹⁹Th.
2012Co22: ²⁰⁷Pb(⁶⁴Ni,X), E=5.92 MeV/nucleon; measured lifetime of rotating nuclear molecules or dinuclear system (DNS).

2012Co22: ²⁰⁷Pb(⁶⁴Ni,X), E=5.92 MeV/nucleon; measured lifetime of rotating nuclear molecules or dinuclear system (DNS). Detected reaction products and measured their velocity distribution correlated with α particles from fragments. The ⁶⁴Ni beam from UNILAC accelerator at GSI facility, reaction products separated by SHIP velocity filter. Target=300 µg/cm² thick ²⁰⁷Pb deposited on a 40 µg/cm² thick carbon foil and covered by a layer of 10 µg/cm² carbon. Isotopes identified by their α decay characteristics. For ²¹⁵Ra, measured mean lifetime of DNS τ =2.0× 10⁻²⁰ s 3.

²¹⁵Ra Levels

The level structure of ²¹⁵Ra, described by a multiparticle octupole coupling mechanism, leads to configuration mixed isomers with characteristic enhanced E3 transitions. These have been explained by the coupling of octupole vibrations to the shell-model configurations presented here for the six protons and single neutron outside closed shells (1998St24).

The low-lying yrast levels in ²¹⁵Ra also have been interpreted in terms of the shell model by coupling the odd neutron to experimentally determined energies in ²¹⁴Ra (1983Lo16). The enhancement of the 773-keV E3 transition in ²¹⁵Ra is due mostly to the coupling of the particle orbital to the octupole phonon in the ²⁰⁸Pb core. Its B(E3)(W.u.)=37 2 agrees with the systematics for E3 transitions in the ²⁰⁸Pb region (1983Lo16). See also 1998St24, 1989Dr02, 1985Be05, and 1988Fu10 for further discussions on B(E3) values for this nucleus.

Cross Reference (XREF) Flags

A	²¹⁵ Ac ε decay (0.17 s)	

- **B** ²¹⁹Th α decay (1.05 μ s)
 - 206 Pb(13 C,4n γ)

С

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	XREF	Comments
0.0 [@]	(9/2+)	1.66 ms 2	ABC	%α=100 RMS charge radius <r<sup>2>^{1/2}=5.619 fm 20; deduced from interpolation of evaluated rms charge radii of ²¹⁴Ra to ²³²Ra (2013An02), with slope k_z=0.37 in formula 9 of 2004An14. Value has been adjusted upward by 0.004 fm to account for slight difference in the systematics trend of deduced rms radii for A=215, and evaluated values in 2013An02 for A=210 isotopes. No ε, β⁺ decay observed. Theoretical estimates: %ε+%β⁺<2×10⁻⁴ (1973Ta30), <7×10⁻⁵ (1997Mo25). T_{1/2}: weighted average of 1.64 ms 4 (2005Li17), 1.62 ms +16−13 (2000Ni02), 1.68 ms 2 (2000He17), 1.56 ms 10 (1970To08), 1.7 ms 2 (1968Va18), 1.5 ms 1 (1991An10; also 1.5 ms 3 in 1991An13). Other: 1.6 ms (1961Gr43,1962Gr20).</r<sup>
				J^{n} : analogy to N=127 isotones (for example 211Po and 213Rn) suggest $J^{n} = (9/2^{+})$. Shell model configuration for the odd neutron is expected to be $g_{9/2}$.
773.0 ^{&} 2	(15/2 ⁻)	67.2 ns <i>14</i>	С	J ^{π} : 773 γ E3 to (9/2 ⁺). Analogy with 896-keV state (J ^{π} =(15/2 ⁻)) in ²¹³ Rn. T _{1/2} : from $\gamma\gamma$ (t) (1998St24; also 68.6 ns 21 in 1989Dr02). Others: 77 ns 2 (1988Fu10), 67 ns 3 (1987AdZU). Value from 1988Fu10 is considered by the evaluators as discrepant. From pulsed-beam method, values are 110 ns 8

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

²¹⁵Ra Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	XREF	Comments
				(1989Dr02), 120 ns 10 (1983Lo16). The higher values in pulsed-beam experiments are likely due to much longer half-life (7.3 μ s) of the 1877 level, which will affect the observed decay rate of 773 γ , thus making it more difficult to measure lifetime in the ns range with this method.
1625.3 [@] 3	$(17/2^+)$		С	J ^{π} : 852 γ E1 to (15/2 ⁻). Analogy with 1529-keV state (J ^{π} =(17/2 ⁺)) in ²¹³ Rn.
1821.2 [@] 3	(21/2+)	25.0 ns 14	С	J ^{π} : 196 γ E2 to (17/2 ⁺), 1048 γ E3 to (15/2 ⁻). Analogy with 1664-keV state (J ^{π} =(21/2 ⁺)) in ²¹³ Rn (1988Fu10).
1877.8 ^{<i>a</i>} 3	(25/2+)	7.29 µs 20	С	J^{π} : analogous state at >1664 keV with $T_{1/2} \approx 1 \ \mu s$ has been observed in ²¹³ Rn (1988Fu10).
				T _{1/2} : weighted average of 7.6 μ s 2 (2004He25), 6.86 μ s 28 (1998St24), 7.2 μ s 2 (1988Fu10). Other: ≥2 μ s (1983Lo16). Mixed with 2053.8 level by particle octupole coupling.
1994.5 ^a 3	$(23/2^+)$		С	
2053.8 [@] 4	$(25/2^+)$		С	Mixed with 1877.8 level by particle octupole coupling.
2214.4 ^b 4	$(27/2^{-})$		С	
2246.9 ^c 4	$(29/2^{-})$	1.39 µs 7	С	
2246.9+x ^c	(31/2 ⁻)		C	Additional information 1. E(level): $x \leq 35$ keV.
$3088.8 + x^{a} 2$	$(33/2^+)$		C	
$3143.7 + x^{e} 3$ $3331.1 + x^{e} 4$	$(35/2^+)$ $(37/2^+)$		C	
$3413.4 + x^{c} 4$	$(37/2^{-})$		c	
3415.6+x ^e 4	$(37/2^+)$		c	
3586.4+x ^f 4	$(37/2^+)$		С	
3738.6+x ^c 4	(39/2-)		С	
3756.6+x ^C 4	$(43/2^{-})$	555 ns 10	С	μ =15.61 6 (1998St24,2011StZZ)
				$T_{1/2}$: other: 0.59 μ s 18 (198/AdZU).
				Occupole-mixed state. μ : from g factor=+0.726.3 (TDPAD method 1998St24) Other measurement:
				15.78 <i>15</i> (1987AdZU, from g factor=+0.734 7, stroboscopic observation of perturbed angular distribution). Theoretical value=+0.73 (1998St24).
				at 1 GeV/nucleon, where $R_{exp}=Y/(N_{imp}FG)$, N_{imp} is number of implanted ions, Y is the isomeric yield, F and G are correction factors for in-flight isomer decay losses and the finite detection time of the x radiation
				respectively. Comparison of measured yield ratios with theoretical values calculated by using ABRABLA Monte-Carlo code.
3765.7+x 4			C	J": 434.6y to $(37/2^+)$ suggests 37/2 to 41/2.
3855.0+x 4	(12)(2-)		C	$J^{*}: 439.4\gamma$ to $(31/2^{*})$ suggests $31/2$ to $41/2$.
3935.4+x° 4 4207.3+x 5	(43/2 ⁻)		C	Octupole-mixed state.
$4366.8 + x^{u} 4$ $4553.5 + x^{c} 4$	$(45/2^+)$ $(47/2^-)$		C	
$4567.0 \pm x^{d} 4$	$(40/2^+)$	10.47 ns 14	c	u = 18.87.25 (1998St24.2011St77)
+307.01A +	(4)[2])	10.47 113 14	C	$T_{1/2}$: other: ≈10 ns (1987AdZU). μ: from g factor=+0.77 <i>1</i> (TDPAD method, 1998St24). Theoretical value=+0.80 (1998St24).
4686.2+x ^b 5	$(47/2^{-})$		С	
4882.7+x ^b 4	$(51/2^{-})$		С	
5372.7+x ^{<i>d</i>} 5	$(53/2^+)$		С	
5608.6+x ^g 5	$(55/2^{-})$		С	

Adopted Levels, Gammas (continued)

²¹⁵Ra Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	XREF
5608.7+x ^d 5	$(57/2^+)$	1.66 ns 14	С
6033.5+x ^h 5	$(57/2^+)$		С
6076.4+x ^h 5	$(59/2^+)$		С
6283.2+x ^h 6	$(61/2^+)$		С

[†] From a least-squares fit to $E\gamma$ values from 1998St24.

[‡] As proposed by 1998St24, based on γ -ray multipolarities, angular distributions, transition strengths, and excitation functions. These assignments are placed in parentheses since J^{π} assignment for the ground state is still tentative. Shell model configurations from 1998St24 are based on level energies and γ -transition rates.

[#] From pulsed beam method (1998St24), unless otherwise stated. Values from previous measurements are given under comments.

[@] Member of configuration= $\pi h_{9/2}^6 \otimes \nu g_{9/2}$.

[&] Member of configuration= $\pi h_{9/2}^{6} \otimes v_{j_{15/2}}$.

^{*a*} Member of configuration= $\pi h_{9/2}^{5} \otimes \pi f_{7/2} \otimes \nu g_{9/2}$.

^b Member of configuration= $\pi h_{9/2}^{4} \otimes \pi f_{7/2} \otimes \pi i_{13/2} \otimes \nu_{9/2}$.

^c Member of configuration= $\pi h_{9/2}^{5} \otimes \pi i_{13/2} \otimes \nu g_{9/2}$.

^d Member of configuration= $\pi h_{9/2}^4 \otimes \pi i_{13/2}^2 \otimes \nu g_{9/2}$.

^{*e*} Member of configuration= $\pi h_{9/2}^5 \otimes \pi f_{7/2} \otimes \nu g_{9/2}$.

^{*f*} Member of configuration= $\pi h_{9/2}^{4} \otimes \pi f_{7/2}^2 \otimes \nu g_{9/2}$.

^g Member of configuration= $\pi h_{9/2}^{3} \otimes \pi f_{7/2}^{2} \otimes \pi i_{13/2} \otimes \nu g_{9/2}$.

^{*h*} Member of configuration= $\pi h_{9/2}^3 \otimes \pi f_{7/2} \otimes \pi i_{13/2}^2 \otimes vg_{9/2}$.

$\gamma(^{215}\text{Ra})$

All γ -ray data are from ²⁰⁶Pb(¹³C,4n γ).

	E _i (level)	\mathbf{J}_i^{π}	E_{γ}	I_{γ}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.	δ	α^{\dagger}	Comments
	773.0	(15/2 ⁻)	773.0 2	100	0.0 (9/2+)	E3		0.0404	$ \begin{array}{l} \alpha(\mathrm{K}) = 0.0255 \ 4; \ \alpha(\mathrm{L}) = 0.01105 \ 16; \ \alpha(\mathrm{M}) = 0.00287 \ 4 \\ \alpha(\mathrm{N}) = 0.000760 \ 11; \ \alpha(\mathrm{O}) = 0.0001679 \ 24; \ \alpha(\mathrm{P}) = 2.71 \times 10^{-5} \\ 4; \ \alpha(\mathrm{Q}) = 1.145 \times 10^{-6} \ 16 \\ \mathrm{P}(\mathrm{F3})(\mathrm{W}; \mathrm{v}) = 38 \ 4 \ 8 \end{array} $
	1625.3	(17/2 ⁺)	852.3 2	100	773.0 (15/2-) E1		0.00425	$\alpha(K)=0.00350 \ 5; \ \alpha(L)=0.000572 \ 8; \ \alpha(M)=0.0001346 \ 19$ $\alpha(N)=3.53\times10^{-5} \ 5; \ \alpha(O)=8.00\times10^{-6} \ 12;$ $\alpha(P)=1 \ 378\times10^{-6} \ 20; \ \alpha(O)=1 \ 037\times10^{-7} \ 15$
	1821.2	(21/2+)	196.0 2	100.0 6	1625.3 (17/2+) E2		0.629	$\alpha(\Gamma) = 1.681747$; $\alpha(L) = 0.3405$; $\alpha(M) = 0.091714$ $\alpha(N) = 0.02424$; $\alpha(O) = 0.005198$; $\alpha(P) = 0.00076812$; $\alpha(Q) = 7.84 \times 10^{-6}12$ $B(F2)(W_W) = 0.483$
			1048.2 2	48.6 4	773.0 (15/2-) E3		0.0195	$\begin{aligned} \alpha(\text{K}) &= 0.01382 \ 20; \ \alpha(\text{L}) &= 0.00425 \ 6; \ \alpha(\text{M}) &= 0.001074 \ 15 \\ \alpha(\text{N}) &= 0.000284 \ 4; \ \alpha(\text{O}) &= 6.33 \times 10^{-5} \ 9; \ \alpha(\text{P}) &= 1.047 \times 10^{-5} \\ 15; \ \alpha(\text{Q}) &= 5.59 \times 10^{-7} \ 8 \end{aligned}$
4	1877.8	(25/2+)	56.5 2	100	1821.2 (21/2+) E2		145 4	B(E3)(W,U.)=2.91 17 α (L)=106.3 24; α (M)=28.8 7 α (N)=7.61 17; α (O)=1.61 4; α (P)=0.231 6; α (Q)=0.000514 11 D(C2)(W,C) = 0.0121 6
	1994.5	(23/2 ⁺)	173.3 2	100	1821.2 (21/2+) M1		3.27	B(E2)(W.U.)=0.0121 6 $\alpha(K)=2.63 4; \alpha(L)=0.488 7; \alpha(M)=0.1165 17$ $\alpha(N)=0.0307 5; \alpha(O)=0.00701 10; \alpha(P)=0.001222 18;$ $\alpha(O)=9.58\times10^{-5} 14$
	2053.8	(25/2+)	59.3 2	16 2	1994.5 (23/2+) M1		14.25 25	$\alpha(L)=10.80 \ 19; \ \alpha(M)=2.58 \ 5$ $\alpha(N)=0.681 \ 12; \ \alpha(O)=0.155 \ 3; \ \alpha(P)=0.0271 \ 5;$ $\alpha(Q)=0.00213 \ 4$
			176.0 2	100 2	1877.8 (25/2+) M1		3.13	$\alpha(K)=2.52 \ 4; \ \alpha(L)=0.467 \ 7; \ \alpha(M)=0.1115 \ 16 \ \alpha(N)=0.0294 \ 5; \ \alpha(O)=0.00671 \ 10; \ \alpha(P)=0.001169 \ 17; \ \alpha(Q)=9.17\times10^{-5} \ 14$
	2214.4	(27/2 ⁻)	336.6 2	100	1877.8 (25/2+) (E1)		0.0272	$\alpha(K)=0.0220 \ 3; \ \alpha(L)=0.00396 \ 6; \ \alpha(M)=0.000942 \ 14$ $\alpha(N)=0.000247 \ 4; \ \alpha(O)=5.53\times10^{-5} \ 8; \ \alpha(P)=9.26\times10^{-6}$ $13; \ \alpha(Q)=6.12\times10^{-7} \ 9$
	2246.9	(29/2 ⁻)	(32.5) 193.1 2	0.997 <i>13</i> 100.0 <i>17</i>	2214.4 (27/2 ⁻ 2053.8 (25/2 ⁺) [M1]) M2(+E3)	<0.2	84 <i>5</i> 10.99	B(M1)(W.u.)= $3.4 \times 10^{-7} 5$ $\alpha(K)=7.38 11; \alpha(L)=2.68 4; \alpha(M)=0.699 11$ $\alpha(N)=0.187 3; \alpha(O)=0.0422 7; \alpha(P)=0.00709 11;$ $\alpha(Q)=0.000471 7$ B(M2)(W.u.)=0.17 1; B(E3)(W.u.)<100 δ : ce data gives $\delta(E3/M2)<0.45$, but RUL(E3)=100 gives $\delta<0.2$
			369.1 2	32 3	1877.8 (25/2+) M2+E3	1.07 +25-20	0.81 9	$\alpha(K)=0.50$ 9; $\alpha(L)=0.226$ 5; $\alpha(M)=0.0593$ 10

						Adopte	d Levels, Gammas	(continued)
							$\gamma(^{215}\text{Ra})$ (continue	ed)
E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult.	$lpha^{\dagger}$	Comments
								$\alpha(N)=0.01577\ 25;\ \alpha(O)=0.00349\ 7;\ \alpha(P)=0.000566\ 16;\ \alpha(Q)=2.6\times10^{-5}$
2246.9+x	(31/2 ⁻)	х		2246.9	(29/2 ⁻)			⁴ B(M2)(W.u.)=0.0011 4; B(E3)(W.u.)=4.8 13 E_{γ} : no transition seen, but required for current level scheme. Estimated value of x < 35 keV.
3088.8+x	(33/2+)	841.9 2	100	2246.9+x	(31/2 ⁻)	E1	0.00435	$\alpha(K)=0.00358 5; \ \alpha(L)=0.000586 9; \ \alpha(M)=0.0001377 \ 20 \\ \alpha(N)=3.61\times10^{-5} 5; \ \alpha(O)=8.19\times10^{-6} \ 12; \ \alpha(P)=1.410\times10^{-6} \ 20; \\ \alpha(O)=1.060\times10^{-7} \ 15$
3143.7+x	$(35/2^+)$	54.9 2	100	3088.8+x	$(33/2^+)$	M1	17.9 4	$\alpha(Q) = 1.000 \times 10^{-15}$ $\alpha(L) = 13.54\ 24;\ \alpha(M) = 3.24\ 6$ $\alpha(N) = 0.854\ 15;\ \alpha(Q) = 0.195\ 4;\ \alpha(P) = 0.0340\ 6;\ \alpha(Q) = 0.00267\ 5$
3331.1+x	(37/2+)	187.4 2	100	3143.7+x	(35/2+)	M1	2.63	$\alpha(K) = 2.11 \ 3; \ \alpha(L) = 0.391 \ 6; \ \alpha(M) = 0.0933 \ 14 \\ \alpha(K) = 0.0246 \ 4; \ \alpha(O) = 0.00562 \ 8; \ \alpha(P) = 0.000979 \ 14; \ \alpha(Q) = 7.67 \times 10^{-5} \\ 11 \\ \alpha(K) = 0.0246 \ 4; \ \alpha(O) = 0.00562 \ 8; \ \alpha(P) = 0.000979 \ 14; \ \alpha(Q) = 7.67 \times 10^{-5} \\ 11 \\ \alpha(K) = 0.0046 \ 4; \ \alpha(K) = 0.00562 \ 8; \ \alpha(K) = 0.000979 \ 14; \ \alpha(K) = 0.0046 \ 4; \ \alpha(K) = 0.00562 \ 8; \ \alpha(K) = 0.000979 \ 14; \ \alpha(K) = 0.0046 \ 4; \ \alpha(K) = 0.00562 \ 8; \ \alpha(K) = 0.000979 \ 14; \ \alpha(K) = 0.0046 \ 4; \ \alpha(K) = 0.00562 \ 8; \ \alpha(K) = 0.000979 \ 14; \ \alpha(K) = 0.0046 \ 4; \ \alpha(K) = 0.00562 \ 8; \ \alpha(K) = 0.0046 \ 4; \ \alpha(K) = 0.04$
3413.4+x	$(37/2^{-})$	269.7 2	100	3143.7+x	$(35/2^+)$ $(35/2^+)$	D M1	0.030	$\alpha(K) = 0.748$ 11: $\alpha(1) = 0.1376$ 20: $\alpha(M) = 0.0328$ 5
3413.0+x	(37/2)	271.92	100	5145.7+X	(33/2)	IVII	0.930	$\alpha(\mathbf{N})=0.748\ 17,\ \alpha(\mathbf{L})=0.1576\ 20,\ \alpha(\mathbf{M})=0.0528\ 5$ $\alpha(\mathbf{N})=0.00866\ 13;\ \alpha(\mathbf{O})=0.00198\ 3;\ \alpha(\mathbf{P})=0.000345\ 5;\ \alpha(\mathbf{Q})=2.70\times10^{-5}$
3586.4+x	(37/2 ⁺)	170.8 2	19 <i>4</i>	3415.6+x	(37/2 ⁺)	M1	3.41	$\alpha(K)=2.74 \ 4; \ \alpha(L)=0.508 \ 8; \ \alpha(M)=0.1214 \ 18 \ \alpha(N)=0.0320 \ 5; \ \alpha(O)=0.00730 \ 11; \ \alpha(P)=0.001273 \ 19; \ \alpha(Q)=9.98\times10^{-5} \ 15 \ 15$
		255.4 2	100 12	3331.1+x	(37/2+)	M1	1.106	$\alpha(K)=0.890 \ 13; \ \alpha(L)=0.1638 \ 24; \ \alpha(M)=0.0391 \ 6$ $\alpha(N)=0.01031 \ 15; \ \alpha(O)=0.00235 \ 4; \ \alpha(P)=0.000410 \ 6; \ \alpha(Q)=3.21\times10^{-5}$
		442.6 2	10 4	3143.7+x	(35/2+)			-
3738.6+x	(39/2 ⁻)	152.2 2	46.5 5	3586.4+x	(37/2+)	E1	0.1740	$\alpha(K)=0.1372 \ 20; \ \alpha(L)=0.0279 \ 4; \ \alpha(M)=0.00669 \ 10 \\ \alpha(N)=0.00174 \ 3; \ \alpha(O)=0.000385 \ 6; \ \alpha(P)=6.20\times10^{-5} \ 9; \\ \alpha(O)=3.46\times10^{-6} \ 5$
		323.1 2	30.7 10	3415.6+x	(37/2 ⁺)	E1	0.0298	$\alpha(\text{K})=0.0241 \ 4; \ \alpha(\text{L})=0.00435 \ 7; \ \alpha(\text{M})=0.001036 \ 15$ $\alpha(\text{N})=0.000271 \ 4; \ \alpha(\text{O})=6.07\times10^{-5} \ 9; \ \alpha(\text{P})=1.016\times10^{-5} \ 15;$ $\alpha(\text{O})=6.67\times10^{-7} \ 10$
		325.3 2	4.0 10	3413.4+x	(37/2 ⁻)			
		407.4 2	100.0 10	3331.1+x	(37/2+)	E1	0.0180	$\alpha(K)=0.01463 \ 21; \ \alpha(L)=0.00257 \ 4; \ \alpha(M)=0.000611 \ 9$ $\alpha(N)=0.0001600 \ 23; \ \alpha(O)=3.60\times10^{-5} \ 5; \ \alpha(P)=6.07\times10^{-6} \ 9;$ $\alpha(Q)=4.14\times10^{-7} \ 6$
3756.6+x	(43/2 ⁻)	(18.0)	0.029 2	3738.6+x	(39/2 ⁻)	[E2]	2.54×10 ⁴	$\alpha(L)=1.498 \times 10^4 \ 21; \ \alpha(M)=7.85 \times 10^3 \ 11$ $\alpha(N)=2.06 \times 10^3 \ 3; \ \alpha(O)=436 \ 7; \ \alpha(P)=62.1 \ 9; \ \alpha(Q)=0.0875 \ 13$ $B(E2)(Wu)=0.24 \ 7$
		425.5 2	100 3	3331.1+x	(37/2 ⁺)	E3	0.240	$\begin{aligned} \alpha(\mathbf{K}) &= 0.0887 \ 13; \ \alpha(\mathbf{L}) = 0.1113 \ 16; \ \alpha(\mathbf{M}) = 0.0303 \ 5\\ \alpha(\mathbf{N}) &= 0.00806 \ 12; \ \alpha(\mathbf{O}) = 0.001748 \ 25; \ \alpha(\mathbf{P}) = 0.000269 \ 4; \\ \alpha(\mathbf{Q}) &= 5.66 \times 10^{-6} \ 8\\ \mathbf{P}(\mathbf{F}_{2})(\mathbf{V}_{\mathbf{W}}) &= 27 \ 2 \end{aligned}$
3765.7+x		434.6 2	100	3331.1+x	$(37/2^+)$			D(E3)(W.U.)=57.5

S

L

Adopted Levels, Gammas (continued)

$\gamma(^{215}\text{Ra})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}	E_f	\mathbf{J}_f^{π}	Mult.	α^{\dagger}	Comments
3855.0+x		439.4 2	100	3415.6+x	$(37/2^+)$			
3935.4+x	$(43/2^{-})$	178.6 2	100	3756.6+x	$(43/2^{-})$	M1	3.01	$\alpha(K)=2.42$ 4; $\alpha(L)=0.448$ 7; $\alpha(M)=0.1070$ 16
								α (N)=0.0282 4; α (O)=0.00644 10; α (P)=0.001122 17; α (Q)=8.79×10 ⁻⁵ 13
4207.3+x	(1 - (- +)	352.3 2	100	3855.0+x	(10/0-)	-		
4366.8+x	$(45/2^{+})$	431.5 2	98.8 25	3935.4+x	$(43/2^{-})$	El	0.01597	$\alpha(\mathbf{K}) = 0.01298 \ I9; \ \alpha(\mathbf{L}) = 0.00227 \ 4; \ \alpha(\mathbf{M}) = 0.000538 \ 8$
		(10.2.2)	100 5	2756 61-	$(12/2^{-})$			$\alpha(N)=0.0001409\ 20;\ \alpha(O)=3.17\times10^{-5}\ 5;\ \alpha(P)=5.36\times10^{-6}\ 8;\ \alpha(Q)=3.69\times10^{-7}\ 6$
4553 5±v	$(47/2^{-})$	010.2 2	100 5	3756 6±x	(43/2)	(0)		
4567.0+x	$(49/2^+)$	(13.5)	10 5 5	45535 + x	$(47/2^{-})$	(Q) [E1]	5 74	$\alpha(N) = 1.107.16; \alpha(\Omega) = 0.207.3; \alpha(P) = 0.0218.3; \alpha(\Omega) = 0.000516.8$
1507.01X	(1)/2	(15.5)	10.5 5	1555.51X	(17/2)	[B1]	5.71	B(E1)(W.u.)=0.00026 6
		200.1 2	100.0 19	4366.8+x	$(45/2^+)$	(E2)	0.584	$\alpha(K)=0.1616\ 23;\ \alpha(L)=0.311\ 5;\ \alpha(M)=0.0839\ 13$
								α (N)=0.0222 4; α (O)=0.00475 7; α (P)=0.000704 11; α (Q)=7.44×10 ⁻⁶ 11
								B(E2)(W.u.)=0.758 23
		810.2 2	59.3 19	3756.6+x	$(43/2^{-})$	(E3)	0.0359	$\alpha(K)=0.0232$ 4; $\alpha(L)=0.00945$ 14; $\alpha(M)=0.00244$ 4
								α (N)=0.000647 9; α (O)=0.0001431 20; α (P)=2.32×10 ⁻⁵ 4; α (Q)=1.021×10 ⁻⁶ 15
4696.2	(47/2-)	750 7 2	100	2025 4	(12/2-)	$\langle \mathbf{O} \rangle$		B(E3)(W.u.)=37.6 15
4686.2+X	(4/2)	106.2.2	100	3935.4+X	(43/2)	(Q)	0.626	$\alpha(K) = 0.1676.24; \alpha(L) = 0.227.5; \alpha(M) = 0.0011.14$
4002.7+X	(31/2)	190.5 2	23 3	4060.2+X	(47/2)		0.020	$u(\mathbf{K}) = 0.1070 \ 24, \ u(\mathbf{L}) = 0.557 \ 5, \ u(\mathbf{M}) = 0.0911 \ 14$
		31562	100 4	$4567.0 \pm x$	$(49/2^+)$			$u(\mathbf{N}) = 0.02414, u(\mathbf{O}) = 0.003138, u(\mathbf{F}) = 0.00070372, u(\mathbf{Q}) = 7.01\times10772$
		329.5.2	12.3	4553.5+x	$(47/2^{-})$			
5372.7+x	$(53/2^+)$	490.1 2	100 3	4882.7+x	$(51/2^{-})$	D		
		805.7 2	47.6 16	4567.0+x	$(49/2^+)$	(Q)		
5608.6+x	$(55/2^{-})$	725.9 2	100	4882.7+x	$(51/2^{-})$			
5608.7+x	$(57/2^+)$	236.0 2	100	5372.7+x	$(53/2^+)$	E2	0.328	α (K)=0.1164 17; α (L)=0.1559 23; α (M)=0.0418 6
								α (N)=0.01105 <i>16</i> ; α (O)=0.00238 <i>4</i> ; α (P)=0.000356 <i>6</i> ; α (Q)=4.96×10 ⁻⁶ 7
(022.5)	(57/0+)	404.9.2	100	5(00 7	(57/0+)			B(E2)(W.u.)=4.6 4
0033.3+x	$(5/2^+)$	424.8 2	100	5608./+X	$(57/2^+)$			
6283.2 + x	(59/2) $(61/2^+)$	2407.72	100	$60335 \pm v$	$(57/2^+)$			
0203.2+X	(01/2)	249.1 Z	100	0055.5+X	(31/2)			

[†] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

 $^{215}_{88}\mathrm{Ra}_{127}$ -6

²¹⁵₈₈Ra₁₂₇

²¹⁵₈₈Ra₁₂₇