Adopted Levels, Gammas

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation		NDS 114, 2023 (2013)	23-Sep-2013

 $Q(\beta^{-}) = -2216 \ 10$; $S(n) = 6795 \ 11$; $S(p) = 2651 \ 11$; $Q(\alpha) = 9540 \ 7$ 2012Wa38 S(2n)=12272 9, S(2p)=7680 8 (2012Wa38).

²¹⁵Ac evaluated by A.K. Jain, S. Singh, B. Singh, N. Kaur, S. Lakshami, B. Maheshwari.

Additional information 1. ²¹⁵Fr identified (1961Gr43) in excitation function measurements in ²⁰⁸Pb(¹¹B,4n)²¹⁵Fr reaction. 1970Bo13 identified ²¹⁵Fr as descendent of ²²³Pa, and estimated its half-life.

All γ -ray and excited-state data are from the ²⁰⁸Pb(¹¹B,4n γ) dataset.

²¹⁵Fr Levels

The low-lying states of 215 Fr result from the coupling of an $h_{9/2}$ proton to the 0^+ , 2^+ , 4^+ , 6^+ , and 8^+ states of the even-even core (²¹⁴Rn). The energies of these even-spin states are similar to those of the 9/2, and (11/2,13/2), (15/2,17/2), (21/2,19/2) doublets in ²¹⁵Fr. The long-range α particle groups emitted from these states in ²¹⁵Fr are analogous to those emitted from the g.s., 4⁺, 6⁺, and 8^+ states in 216 Ra.

First level scheme of ²¹⁵Fr with four excited states was reported by 1982GoZU (also 1983GoZX). 1984De16 extended the level scheme up to 3068 level with 20 gamma rays. A contemporary study by 1984Sc25 produced a level scheme up to 3462 level with 26 gamma rays; the level scheme up to 3068-keV level almost the same as in 1984De16. 1985Dr04 measured polarization asymmetries for several of the gamma rays, establishing definite multipolarities. They reported 21 gamma rays and essentially confirmed the earlier level schemes of 1984De16 and 1984Sc25. In the opinion of the evaluators, further work is needed to define the ordering of the cascades above 2251 level.

Cross Reference (XREF) Flags

 219 Ac α decay (11.8 μ s) А 208 Pb(11 B,4n γ) в

E(level) [†]	$J^{\pi \#}$	T _{1/2}	XREF	Comments
0.0	9/2-	86 ns 5	AB	%α=100
				RMS charge radius $\langle r^2 \rangle^{1/2} = 5.620$ fm 20; deduced from interpolation of evaluated rms charge radii of 212 Fr to 228 Fr (2013An02), with slope k _z =0.36 in formula 9 of 2004An14. Value has been adjusted upward by 0.004 fm to account for slight difference in the systematics trend of deduced rms radii for A=215, and evaluated values in 2013An02 for A=210 isotopes.
				J^{π} : favored α decay (HF \approx 1) to ²¹¹ At ($J^{\pi}=9/2^{-}$).
				T _{1/2} : from slope of α-decay time spectrum fitted to two components: 86 ns and 30 ns (1984De16). Others: 104 ns <i>16</i> (1984Sc25, slope of time spectrum); 0.12 μ s 2 (1974No02, measured for ≈90 ns only), <0.5 μ s (1970Bo13). Weighted average of all results is 89 ns 6.
				Configuration= $\pi 1h_{9/2} \otimes 0^+$.
				No ε decay. Evaluators calculated $\%\varepsilon + \%\beta^+ = 1.0 \times 10^{-08}$ for logft=5.0. $\%\varepsilon + \%\beta^+ < 1.0 \times 10^{-8}$, theory (1973Ta30).
670.34 13	$(13/2)^{-}$		В	J^{π} : 670 γ E2 to 9/2 ⁻ . Configuration= $\pi 1h_{9/2} \otimes 2^+$.
699.97 <i>13</i>	$(11/2)^{-}$		В	J ^{π} : 700 γ M1+E2 to 9/2 ⁻ . Configuration= π 1h _{9/2} \otimes 2 ⁺ .
835.43 14	(13/2)+		В	$%\alpha$ =4.3 <i>15</i> J ^π : 135γ E1 to (11/2) ⁻ . %α: deduced by evaluators from Iα(10160)/Iα(total)= 3.8% <i>15</i> (1984Sc25), and renormalizing as α branch from 87.7% to 100%

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

²¹⁵Fr Levels (continued)

E(level) [†]	$J^{\pi #}$	T _{1/2}	XREF	Comments
1121.51 17	(17/2) ⁻		В	 %α=0.9 <i>I</i> J^π: 451γ E2 to (13/2)⁻. Configuration=π1h_{9/2}⊗4⁺. %α: for 1121 and/or 1149 levels; deduced by evaluators from Iα(10460)/Iα(total)=0.8% <i>I</i> (1984Sc25), and renormalizing g.s. α branch from 87.7% to 100%.
1149.04 <i>14</i>	(15/2) ⁻		В	$%\alpha = 0.9 I$ J ^π : 479γ M1+E2 to (13/2) ⁻ . Configuration= $\pi 1h_{9/2} \otimes 4^+$. $%\alpha$: for 1121 and/or 1149 levels; deduced by evaluators from Iα(10460)/Iα(total)=0.8% I (1984Sc25), and renormalizing g.s. α branch from 87.7% to 100%.
1440.02 18	(19/2) ⁻	4 ns 2	В	 %α=4.7 4 μ=3.1 9 (1984De16) J^π: 318γ M1+E2 to (17/2)⁻. Configuration=π1h_{9/2}⊗6⁺. μ: from g factor=0.33 10, DPAD of γ rays (1984De16), value is for 1440 and/or 1573 level. %α: deduced by evaluators from Iα(10740)/Ια(total)=4.1% 3 (1984Sc25), and renormalizing g.s. α branch from 87.7% to 100%. T_{1/2}: γγ(t) (1984De16), value is for 1440 and/or 1573 level 10789 (1984De16).
1457.36 <i>21</i> 1573.10 <i>21</i>	(21/2) ⁻ (23/2) ⁻	3.5 ns 14	B	J^{π} : 3367 E2 to (17/2) ⁻ . Configuration= $\pi 1h_{9/2} \otimes 6^+$. $\% \alpha = 4.1 4$ $\mu = 3.8 \ 12 \ (1984Sc25)$ J^{π} : 115.87 M1 to (21/2) ⁻ . Configuration= $\pi 1h_{9/2}^5 \otimes v2g_{9/2}^1 \otimes v1i_{11/2}^1$. Theoretical g-factor=0.12 (1984Sc25) for the assigned shell-model configuration. μ : from g factor=0.33 \ 10, DPAD of γ rays (1984De16), value is for 1440 and/or 1573 level. $\% \alpha$: deduced by evaluators from I α (10890)/I α (total)=3.6% 3 (1984Sc25), and renormalizing g.s. α branch from 87.7% to 100%. $T_{1/2}: \gamma\gamma$ (t) centroid shift method (1984Sc25). Other value: 4 ns 2, $\gamma\gamma$ (t) centroid shift method (1984De16) for 1440 and/or 1573 level
1680.6? [‡] <i>3</i> 1813.62 <i>25</i>	(25/2 ⁻) (27/2) ⁻	2.1 ns 14	B B	J ^{π} : 107.4 γ M1(+E2) to (23/2) ⁻ . Configuration= π 1h ⁵ _{9/2} $\otimes \nu$ 2g ¹ _{9/2} $\otimes \nu$ (1i ¹ _{11/2}). J ^{π} : 133 γ M1+E2 to (25/2) ⁻ ; 240.5 γ E2 to (23/2) ⁻ . Configuration= π (1h ⁴ _{9/2} ,2f ¹ _{1/2}) $\otimes \nu$ (2g ¹ _{9/2} ,11 ¹ _{11/2}). Theoretical g-factor=0.35 (1984Sc25) for assigned configuration.
2015.9 3	(29/2)+	4.7 ns <i>14</i>	В	
2251.3 4	(33/2)+	5.3 ns <i>14</i>	В	μ =7.8 17 (1984De16,1989Ra17,2011StZZ) J^{π} : 235.4 γ E2 to (29/2) ⁺ . Theoretical g-factor=0.49 (1984Sc25) for configuration= $\pi(1h_{9/2}^4, 1i_{13/2}^1) \otimes \nu(2g_{9/2}^1, 1i_{11/2}^1)$ agrees with experimental value. μ : from g factor=0.47 10, DPAD of γ rays (1984De16). $T_{1/2}$: $\gamma\gamma(t)$ and/or $\alpha\gamma(t)$ with centroid-shift method. Weighted average of 5.5 ns 14 (1984Sc25), and 5 ns 2 (1984De16).
2806.8? [‡] 4	$(35/2)^{-}$		В	J^{π} : 555.5 γ E1 to (33/2) ⁺ . Configuration= $\pi(1h_{2}^{5}) \otimes v(2g_{2}^{1}, 1i_{2}^{1}, 2)$.
2900.4? [‡] 4	(35/2 ⁻)		В	J^{π} : predicted by shell model (1984Sc25) with configuration= $\pi(1h_{9/2}^4,2f_{7/2}^1)\otimes \nu(2g_{9/2}^1,1i_{11/2}^1), J^{\pi}=33/2^{(+)}$ proposed in 1985Dr04.
3014.0? [‡] 5 3068.9 <i>4</i>	(37/2 ⁻) (39/2) ⁻	14.6 ns <i>14</i>	B B	J ^{π} : 113.7 γ to (35/2 ⁻). Shell-model configuration= $\pi(1h_{9/2}^5) \otimes \nu(2g_{9/2}^1, 1i_{11/2}^1)$. μ =9.2 4 (1984De16,1989Ra17,2011StZZ)

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

²¹⁵Fr Levels (continued)

E(level) [†]	$J^{\pi \#}$	T _{1/2}	XREF	Comments
				J^{π} : 818 γ E3 to (33/2) ⁺ . Theoretical g-factor=0.41 (1984Sc25) for configuration= $\pi(1h_{9/2}^4, 1i_{13/2}^1) \otimes \nu(1i_{11/2}^1, 1j_{15/2}^1)$ agrees with experimental value.
				μ : from g factor=0.47 2, DPAD of γ rays (1984De16, corrected for diamagnetism and Knight shift). Other: g=0.48 2, DPAD of α particles (1984De16).
				$T_{1/2}$: $\gamma\gamma(t)$ (262 γ -555 γ time curves fitted to a two-level decay formula) (1984Sc25). Other: 33 ns 5 or 30 ns 5 (1984De16), which may correspond to the half-life of the isomer at 3462 keV.
3207.5 5	(41/2 ⁻)		В	J^{π} : 193.6 γ (E2) to (37/2 ⁻). Shell-model configuration= $\pi(1h_{2}^{5}) \otimes \gamma(2g_{2}^{1}g_{1},1)$.
3409.1 4	(41/2)		В	J^{π} : $\Delta J=1$, dipole 340 γ to (39/2) ² .
3417.1? [‡] 5	$(45/2^{-})$		В	J^{π} : 210 γ (E2) to (41/2 ⁻).
3462.3 6	(47/2 ⁺)	22.9 ns 21	В	J^{π} : 45 γ (E1) to (45/2 ⁻). Configuration= $\pi(1h_{9/2}^4, 1i_{13/2}^1) \otimes \nu(2g_{9/2}^1, 1i_{11/2}^1)$. Theoretical g-factor=0.61 (1984Sc25).
				210y time spectrum (1984Sc25). Other: 33 ns 5, $\gamma\gamma$ (t) for all γ rays; 30 ns 5, time spectrum of g.s. α transition fitted to a two-component decay (1984De16); where this half-life is assigned to 3068 level.

[†] From a least-squares fit of γ -ray energies.

[‡] The orderings of 133-107 cascade from 1813 level; 262-55 cascade from 3069-keV level; 194-114-649 cascade from 3207 level; and 45-210 cascade from 3462 level are not established. The level energies for the intermediate levels can be different for alternate orderings.

[#] As proposed in 1985Dr04, 1984Sc25 and 1984De16 based on $\gamma(\theta)$, $\gamma(\ln \text{ pol})$, ce, and transition probabilities. Multiple quasi-particle shell model configurations presented here are from 1984Sc25.

$\gamma(^{215}\mathrm{Fr})$

All data are from 208 Pb(11 B,4n γ).

4

E _i (level)	\mathbf{J}_i^{π}	E_{γ}	I_{γ}	E_f	\mathbf{J}_f^{π}	Mult.	δ	α^{\ddagger}	Comments
670.34	(13/2)-	670.35 15	100	0.0	9/2-	E2		0.0191	α (K)=0.01387 20; α (L)=0.00394 6; α (M)=0.000984 14; α (N)=0.000258 4; α (O)=5.60×10 ⁻⁵ 8 α (P)=8.34×10 ⁻⁶ 12; α (O)=3.06×10 ⁻⁷ 5
699.97	(11/2)-	699.95 <i>15</i>	100	0.0	9/2-	M1+E2	-3.8 5	0.0206 10	$\alpha(K) = 0.0155 \ 9; \ \alpha(L) = 0.00390 \ 13; \ \alpha(M) = 0.00096 \ 3; \\\alpha(N) = 0.000252 \ 8; \ \alpha(O) = 5.51 \times 10^{-5} \ 18 \\\alpha(P) = 8 \ 3 \times 10^{-6} \ 3; \ \alpha(O) = 3.41 \times 10^{-7} \ 19$
835.43	(13/2)+	135.41 15	100 4	699.97	(11/2)-	(E1)		0.227	$\alpha(K)=0.179 3; \alpha(L)=0.0366 6; \alpha(M)=0.00876 13; \alpha(N)=0.00227 4; \alpha(O)=0.000488 7 \alpha(P)=7 12 \times 10^{-5} 10; \alpha(Q)=2 80 \times 10^{-6} 4$
		164.96 <i>15</i>	56.8 25	670.34	(13/2)-	(E1)		0.1402	$\alpha(\mathbf{K}) = 0.1113 \ 16; \ \alpha(\mathbf{L}) = 0.0219 \ 3; \ \alpha(\mathbf{M}) = 0.00523 \ 8; \ \alpha(\mathbf{N}) = 0.001357 \ 20; \ \alpha(\mathbf{O}) = 0.000293 \ 5 \ \alpha(\mathbf{P}) = 4 \ 34 \times 10^{-5} \ 7; \ \alpha(\mathbf{O}) = 1.79 \times 10^{-6} \ 3$
1121.51	(17/2) ⁻	451.23 15	100	670.34	(13/2)-	E2		0.0473	$\alpha(K) = 0.0300 5; \alpha(L) = 0.01294 19; \alpha(M) = 0.00333 5; \alpha(N) = 0.000873 13; \alpha(O) = 0.000187 3 \alpha(P) = 2.67 \times 10^{-5} 4; \alpha(Q) = 6.88 \times 10^{-7} 10$
1149.04	(15/2)-	(27.5 2) 313.41 <i>15</i>	16.7 7	1121.51 835.43	(17/2) ⁻ (13/2) ⁺	(M1) E1		124 <i>4</i> 0.031	$ \begin{array}{l} E_{\gamma}: \text{ from level-energy difference.} \\ \alpha(K) = 0.0251 \; 4; \; \alpha(L) = 0.00450 \; 7; \; \alpha(M) = 0.001067 \; 15; \\ \alpha(N) = 0.000277 \; 4; \; \alpha(O) = 6.08 \times 10^{-5} \; 9 \\ \alpha(P) = 9.31 \times 10^{-6} \; 13; \; \alpha(Q) = 4.38 \times 10^{-7} \; 7 \\ I_{\gamma}: \; \text{from 1984Sc25. Others: 24 4 (1984De16), 45.4 17 } \end{array} $
		449.11 <i>15</i>	100.0 24	699.97	(11/2)-	E2		0.0479	(1985Dr04); the latter in severe disagreement. $\alpha(K)=0.0302 \ 5; \ \alpha(L)=0.01314 \ 19; \ \alpha(M)=0.00338 \ 5; \ \alpha(N)=0.000887 \ 13; \ \alpha(O)=0.000190 \ 3$ $\alpha(P)=2.71\times10^{-5} \ 4; \ \alpha(O)=6.95\times10^{-7} \ 10$
		478.80 15	76 5	670.34	(13/2)-	M1+E2	-3.8 +5-4	0.050 3	$\begin{aligned} \alpha(\mathbf{K}) = 0.0345 \ 24; \ \alpha(\mathbf{L}) = 0.0117 \ 4; \ \alpha(\mathbf{M}) = 0.00297 \ 8; \\ \alpha(\mathbf{N}) = 0.000778 \ 22; \ \alpha(\mathbf{O}) = 0.000168 \ 5 \\ \alpha(\mathbf{P}) = 2.45 \times 10^{-5} \ 8; \ \alpha(\mathbf{Q}) = 7.8 \times 10^{-7} \ 6 \\ \mathbf{L} : \text{ other: } 100 \ 12 \ (1984 \text{De}(6) \text{ is in disagreement} \end{aligned}$
1440.02	(19/2)-	290.93 15	100 3	1149.04	(15/2)-	E2		0.1590	$\alpha(\mathbf{K})=0.0746\ 11;\ \alpha(\mathbf{L})=0.0625\ 9;\ \alpha(\mathbf{M})=0.01653\ 24;\ \alpha(\mathbf{N})=0.00434\ 6;\ \alpha(\mathbf{O})=0.000914\ 13\ \alpha(\mathbf{P})=0.0001248\ 18;\ \alpha(\mathbf{Q})=1.81\times10^{-6}\ 3\ \mathbf{B}(\mathbf{F}2)(\mathbf{W} \mathbf{u})=0.6\ 4$
		318.52 <i>15</i>	22 3	1121.51	(17/2) ⁻	M1+E2	+10 +6-2	0.125 4	$\begin{aligned} \alpha(\text{K})=0.0654\ 25;\ \alpha(\text{L})=0.0446\ 7;\ \alpha(\text{M})=0.01171\ 17;\\ \alpha(\text{N})=0.00307\ 5;\ \alpha(\text{O})=0.000650\ 10\\ \alpha(\text{P})=8.97\times10^{-5}\ 14;\ \alpha(\text{Q})=1.56\times10^{-6}\ 6\\ \text{B}(\text{M}1)(\text{W.u.})=3.\text{E}-7\ +4-3;\ \text{B}(\text{E2})(\text{W.u.})=0.09\ 5\\ \text{I}_{\gamma}:\ \text{unweighted average of values in 1984Sc25 and}\\ 1985Dr04 \end{aligned}$
1457.36	$(21/2)^{-}$	335.88 15	100	1121.51	$(17/2)^{-}$	E2		0.1039	$\alpha(K)=0.0550 \ 8; \ \alpha(L)=0.0363 \ 5; \ \alpha(M)=0.00952 \ 14;$

					-	Adopted Lev	vels, Gammas (con	ntinued)		
γ ⁽²¹⁵ Fr) (continued)										
E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}	E_f	\mathbf{J}_f^{π}	Mult.	δ	α^{\ddagger}	Comments	
1573.10	(23/2)-	115.8 2	5.3 6	1457.36	(21/2)-	[M1]		9.43	$\alpha(N)=0.00250 \ 4; \ \alpha(O)=0.000529 \ 8$ $\alpha(P)=7.31\times10^{-5} \ 11; \ \alpha(Q)=1.309\times10^{-6} \ 19$ $\alpha(K)=7.59 \ 12; \ \alpha(L)=1.402 \ 21; \ \alpha(M)=0.334 \ 5; \ \alpha(N)=0.0876 \ 13; \ \alpha(O)=0.0196 \ 3$ $\alpha(P)=0.00314 \ 5; \ \alpha(Q)=0.000175 \ 3$ $B(M1)(W \ u)=5 \ 1\times10^{-5} \ 22$	
		133.05 [#] 15	100 [#] 9	1440.02	(19/2)-	E2		2.67	$\alpha(K)=0.315 5; \alpha(L)=1.734 25; \alpha(M)=0.469 7; \alpha(N)=0.1230 18; \alpha(O)=0.0256 4$	
									α (P)=0.00332 5; α (Q)=1.310×10 ⁻⁵ 19 B(E2)(W.u.)=12 5	
1680.6?	(25/2 ⁻)	107.4 [†] 3	100	1573.10	(23/2)-	M1(+E2)		11.66 <i>19</i>	α (K)=9.37 <i>15</i> ; α (L)=1.74 <i>3</i> ; α (M)=0.415 <i>7</i> ; α (N)=0.1089 <i>18</i> ; α (O)=0.0243 <i>4</i> ; α (P)=0.00390 7 α (Q)=0.000218 <i>4</i> α ; for M1.	
1813.62	(27/2)-	133.05 ^{#†} 15	41 [#] 11	1680.6?	(25/2 ⁻)	M1+E2	+0.50 +13-18	5.6 4	α (K)=4.2 5; α (L)=1.10 8; α (M)=0.273 24; α (N)=0.072 7; α (O)=0.0156 13; α (P)=0.00235 13	
		240.53 15	100 4	1573.10	(23/2) ⁻	E2		0.292	$\begin{array}{l} \alpha(\mathrm{Q}) = 9.7 \times 10^{-5} \ 11 \\ \mathrm{B(M1)(W.u.)} = 0.0004 \ 3; \ \mathrm{B(E2)(W.u.)} = 1.7 \ 15 \\ \alpha(\mathrm{K}) = 0.1117 \ 16; \ \alpha(\mathrm{L}) = 0.1332 \ 19; \ \alpha(\mathrm{M}) = 0.0355 \ 5; \\ \alpha(\mathrm{N}) = 0.00932 \ 14; \ \alpha(\mathrm{O}) = 0.00196 \ 3 \end{array}$	
2015.9	(29/2)+	202.32 15	100	1813.62	(27/2)-	E1		0.0858	$\alpha(P)=0.000263 4; \alpha(Q)=2.83\times10^{-6} 4$ B(E2)(W.u.)=1.1 8 $\alpha(K)=0.0686 10; \alpha(L)=0.01305 19; \alpha(M)=0.00311$ 5; $\alpha(N)=0.000807 12$ $\alpha(Q)=0.0001754 25; \alpha(P)=2.63\times10^{-5} 4;$	
2251.3	(33/2)+	235.39 15	100	2015.9	(29/2)+	E2		0.314	$\begin{array}{l} \alpha(Q) = 1.136 \times 10^{-6} \ I6 \\ B(E1)(W.u.) = 4.5 \times 10^{-6} \ I4 \\ \alpha(K) = 0.1168 \ I7; \ \alpha(L) = 0.1454 \ 21; \ \alpha(M) = 0.0388 \ 6; \\ \alpha(N) = 0.01019 \ I5; \ \alpha(Q) = 0.00214 \ 3 \\ \alpha(P) = 0.000286 \ 4; \ \alpha(Q) = 2.98 \times 10^{-6} \ 5 \\ B(E2)(W.u.) = 1.5 \ 4 \end{array}$	
2806.8?	(35/2)-	555.48 [†] 15	100	2251.3	(33/2)+	E1		0.00922 13	$\alpha(K)=0.00755 \ 11; \ \alpha(L)=0.001270 \ 18; \alpha(M)=0.000299 \ 5; \ \alpha(N)=7.80\times10^{-5} \ 11 \alpha(O)=1.724\times10^{-5} \ 25; \ \alpha(P)=2.70\times10^{-6} \ 4; \alpha(O)=1.383\times10^{-7} \ 20$	
2900.4?	$(35/2^{-})$	649.09 [†] 1.5	100	2251.3	$(33/2)^+$	D+O			a(x) 1.555/10 20	
3014.0?	(37/2 ⁻)	113.7 [†] 3	100	2900.4?	(35/2 ⁻)	[M1]		9.94 16	α (K)=7.99 <i>13</i> ; α (L)=1.478 <i>24</i> ; α (M)=0.352 <i>6</i> ; α (N)=0.0924 <i>15</i> ; α (O)=0.0206 <i>4</i> α (P)=0.00331 <i>6</i> ; α (Q)=0.000185 <i>3</i>	
3068.9	(39/2)-	262.01 [†] 15	100 3	2806.8?	(35/2)-	E2		0.220	α (K)=0.0931 <i>13</i> ; α (L)=0.0941 <i>14</i> ; α (M)=0.0250 <i>4</i> ; α (N)=0.00656 <i>10</i> ; α (O)=0.001380 <i>20</i>	

S

²¹⁵₈₇Fr₁₂₈-5

Adopted Levels, Gammas (continued)

γ (²¹⁵Fr) (continued)

E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}	E_{f}	\mathbf{J}_{f}^{π}	Mult.	α^{\ddagger}	Comments
3068.9	(39/2)-	817.53 15	34.4 16	2251.3	(33/2)+	(E3)	0.0331	$\begin{aligned} &\alpha(P)=0.000187 \ 3; \ \alpha(Q)=2.31\times10^{-6} \ 4\\ &B(E2)(W.u.)=0.26 \ 3\\ &\alpha(K)=0.0217 \ 3; \ \alpha(L)=0.00846 \ 12; \ \alpha(M)=0.00217 \ 3; \ \alpha(N)=0.000572 \ 8;\\ &\alpha(O)=0.0001238 \ 18\\ &\alpha(P)=1.83\times10^{-5} \ 3; \ \alpha(Q)=5.92\times10^{-7} \ 9 \end{aligned}$
3207.5	(41/2 ⁻)	138.5 3	52 10	3068.9	(39/2)-	[M1]	5.67	B(E3)(W.u.)=27 3 α (K)=4.56 7; α (L)=0.838 13; α (M)=0.200 3; α (N)=0.0524 8; α (O)=0.01171 18 α (P)=0.00188 3; α (Q)=0.0001049 16
		193.6 [†] 2	100 20	3014.0?	(37/2 ⁻)	(E2)	0.622	$\alpha(K)=0.1740\ 25;\ \alpha(L)=0.330\ 5;\ \alpha(M)=0.0887\ 13;\ \alpha(N)=0.0233\ 4;$ $\alpha(O)=0.00486\ 8$ $\alpha(P)=0.000643\ 10;\ \alpha(O)=4.81\times10^{-6}\ 7$
3409.1	(41/2)	340.25 15	100	3068.9	$(39/2)^{-}$	D		u(1)-0.0000+510; u(Q)-+.01×10
3417.1?	(45/2 ⁻)	209.6 [†] 2	100	3207.5	(41/2 ⁻)	E2	0.468	α (K)=0.1485 21; α (L)=0.236 4; α (M)=0.0632 10; α (N)=0.01657 25; α (O)=0.00347 5
								α (P)=0.000461 7; α (Q)=3.95×10 ⁻⁶ 6
3462.3	(47/2 ⁺)	45.2 [†] 3	100	3417.1?	(45/2 ⁻)	(E1)	0.894 21	$\begin{aligned} &\alpha(L)=0.676 \ 16; \ \alpha(M)=0.165 \ 4; \ \alpha(N)=0.0423 \ 10; \ \alpha(O)=0.00869 \ 20; \\ &\alpha(P)=0.001128 \ 25 \\ &\alpha(Q)=3.15\times10^{-5} \ 7 \\ &B(E1)(W.u.)=4.7\times10^{-5} \ 5 \end{aligned}$

[†] The orderings of 133-107 cascade from 1813 level; 262-55 cascade from 3069 level; 194-114-649 cascade from 3207 level; and 45-210 cascade from 3462 level are not established.

^{\ddagger} Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[#] Multiply placed with intensity suitably divided.

6

Adopted Levels, Gammas

 $^{215}_{87}{\rm Fr}_{128}$