219 At α decay (56 s) 1953Hy83,1989Bu09

Type Author Citation Literature Cutoff Date

Full Evaluation NDS 114, 2023 (2013) 23-Sep-2013

Parent: 219 At: E=0.0; $J^{\pi}=(9/2^{-})$; $T_{1/2}=56$ s 3; $Q(\alpha)=6324$ 15; $\%\alpha$ decay \approx 97.0

²¹⁹At-O(α): From 2012Wa38.

²¹⁹At-J^{π}: From 2001Li44, based on experimental level scheme study and proposed configuration= $[\pi h_{9/2}^3 \otimes v g_{9/2}^{-2}]_{9/2}$. HF=1.1 implying a favored α decay supports (9/2⁻) for the ground states of ²¹⁹At and ²¹⁵Bi.

 219 At- $T_{1/2}$: From 219 At Adopted Levels in ENSDF database.

²¹⁹At-%α decay: %α≈97 from quoted α/β^- ratio of ≈30, as determined from measurements of the ²¹⁹At/²¹⁹Rn peak ratio (1953Hy83).

1953Hy83: 227 Ac source. Chemical/physical separation of radioactive target. Detector: ionization chamber. Measured $T_{1/2}$, $E\alpha$, α and β^- decay, α/β^- ratio.

1989Bu09: 219 At activity was produced by spallation of 600-MeV protons on targets of 232 Th. Assignment to 219 At is based on mass separation and on identification of the daughter nucleus 215 Bi in the source. The disintegration rate was determined by measuring the β^- activity with a 4 π plastic scintillator detector. Measured $T_{1/2}$.

²¹⁵Bi Levels

E(level) J^{π} $T_{1/2}$ Comments 0.0 $(9/2^{-})$ 7.6 min 2 J^{π} , $T_{1/2}$: from Adopted Levels.

α radiations

Eα E(level) $Iα^{\ddagger}$ HF^{\dagger} Comments

6208 15 0.0 100 1.1 Eα: deduced by evaluators from Qα=6324 15 (2012Wa38). Measured value of Eα=6270 keV 50 (1953Hy83), further adjusted upward by 5 keV (1991Ry01) due to a change in the calibration energy of Eα values from Eα values from Eα values from Eα value deduced from Eα value, although, it is within the experimental uncertainty.

[†] Using $r_0(^{215}\text{Bi})=1.5467\ 4$, interpolated value deduced from $r_0(^{216}\text{Po})=1.5555\ 2$ and $r_0(^{214}\text{Pb})=1.5379\ 7\ (1998\text{Ak}04)$.

[‡] For absolute intensity per 100 decays, multiply by ≈ 0.97 .