Adopted Levels

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Shaofei Zhu and E. A. Mccutchan	NDS 175, 1 (2021)	1-May-2021

 $Q(\beta^{-})=6650 SY; S(n)=3390 SY; S(p)=9020 SY; Q(\alpha)=1360 SY$ 2021Wa16 $\Delta Q(\beta^{-})=200; \Delta S(n)=200; \Delta S(p)=360; \Delta Q(\alpha)=450$ (2021Wa16). S(2n)=8130 (syst) 280; $Q(\beta^{-}n)=1600$ (syst) 200 (2021Wa16).

$$\begin{split} S(2p) = 18950 \text{ (theory, 2019Mo01).} \\ 2010A124, 2016Ca25, 2017Ca12: \ ^{214}Tl \text{ nuclide was produced by the fragmentation of } ^{238}U \text{ at an energy of 1 GeV/nucleon on a} \end{split}$$
⁹Be target at GSI. Its identification was made on the basis of magnetic rigidity, velocity, time-of-flight, energy loss and its atomic number determined by Fragment Separator (FRS) and associated detectors at different focal planes.

²¹⁴Tl Levels

E(level)	T _{1/2}	Comments	
0	11.0 s 24	$\%\beta^{-}=100;\ \%\beta^{-}n=34\ 12$	
		$T_{1/2}$: from the analysis of implant- β timing correlation with the maximum likelihood algorithm (2016Ca25, 2017Ca12).	
		$\%\beta^-$ n: from the analysis of implant- β and neutron correlation. The efficiency of neutron detector (BELEN) was considered to be constant over the entire energy range at a value of 38% with 5% uncertainty (2016Ca25, 2017Ca12).	
		Production σ =2.50 nb with 10% statistical uncertainty and 20% systematic uncertainty (2010Al24).	