208 **Pb**(16 **O**,**X** γ) 2011As02

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Shaofei Zhu and E. A. Mccutchan	NDS 175, 1 (2021)	1-May-2021

2011As02: A 100 mg/cm² ²⁰⁸Pb target was bombarded by a 85-MeV ¹⁸O beam provided by the Vivitron tandem of the IReS (Strasbourg). Measured E γ , I γ , $\gamma\gamma$ -coin, $\gamma(\theta)$ using Euroball IV array of 71 Compton-suppressed HPGe detectors (15 clusters, 26 clovers and 30 tapered single crystals) with total 239 HPGe crystals grouped into 13 angles with respect to the beam axis. α : Additional information 1.

²¹⁴ Po	Levels
10	LEVEIS

E(level) [†]	J π #	T _{1/2}	Comments
0.0‡	0^{+}		
609.0 [‡] 5	2^{+}		
1014.4 [‡] 7	4+		
1338.8 [‡] 9	6+		
1582.9 [‡] 10	8+	13 ns 1	$T_{1/2}$: from $\gamma\gamma(t)$ (2011As02).
1589.0 <i>10</i>			
1684.9? 9			
1736.8 10			
1822.5 12	8+		
1842.3 10			
1981.7 <i>10</i>	7		
2157.3 12	9		
2178.7 12	10^{+}		
2271.5 13	9		
2377.0 13	10^{+}		
2604.5 14			
2611.9 13	12^{+}		
2669.4 14			
2733.8 14	12+		

[†] From a least squares fit to $E\gamma$'s by evaluators, $E\gamma$ uncertainty taken as 0.5 keV although it was stated as 0.1 to 0.5 keV in 2011As02. [‡] Seq.(A): Yrast cascade.

[#] From 2011As02.

$\gamma(^{214}\mathrm{Po})$

Eγ	I_{γ}	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [†]	δ	α	Comments
239.6 5	15 2	1822.5	8+	1582.9	8+	M1+E2	0.73 +26-23	0.70 10	$\alpha(K)=0.54 \ 10; \ \alpha(L)=0.125 \ 4; \\ \alpha(M)=0.0304 \ 7; \ \alpha(N)=0.00781 \ 18; \\ \alpha(O)=0.00159 \ 5 \\ \alpha(P)=0.000190 \ 13 \\ Mult_{\delta}: \ from \ \alpha_{tot}=0.7 \ 1; \ R_{ADO}=0.95 \ 5 \\ (2011As02).$
244.1 5	44 5	1582.9	8+	1338.8	6+	E2		0.240 4	$\alpha(K)=0.1068 \ 16; \ \alpha(L)=0.0991 \ 16; \\ \alpha(M)=0.0260 \ 4; \ \alpha(N)=0.00667 \ 11; \\ \alpha(O)=0.001290 \ 21 \\ \alpha(P)=0.0001249 \ 20 \\ Mult.: \ from \ \alpha_{tot}=0.25 \ 5; \ R_{ADO}=1.31 \ 7, \\ A_2=+0 \ 30 \ 15 \ (2011A \ s02) $
250.2 5	2.0 8	1589.0		1338.8	6+				2

208 **Pb**(16 **O**,**X** γ) 2011As02 (continued)

γ ⁽²¹⁴Po) (continued)

Eγ	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [†]	α	Comments
292.4 5 324.4 5	1.2 6 70 5	2669.4 1338.8	6+	2377.0 1014.4	10 ⁺ 4 ⁺	E2	0.1001 15	α (K)=0.0562 8; α (L)=0.0328 5; α (M)=0.00848 13; α (N)=0.002178 33; α (O)=0.000426 6 α (P)=4.31×10 ⁻⁵ 6 Mult.: from R _{ADO} =1.30 8, A ₂ =+0.3 1
333.0 <i>5</i> 356.8 <i>5</i>	2.0 8 4 1	2604.5 2733.8	12+	2271.5 2377.0	9 10 ⁺	E2	0.0765 11	(2011As02). $\alpha(K)=0.0455\ 7;\ \alpha(L)=0.02318\ 34;\ \alpha(M)=0.00596$ $9;\ \alpha(N)=0.001530\ 23;\ \alpha(O)=0.000301\ 4$
398.0 5	1.8 6	1736.8	4+	1338.8	$6^+_{2^+}$	E2	0.0542.8	α (P)=3.10×10 ⁻⁵ 5 Mult.: from R _{ADO} =1.3 3 (2011As02). α (K)=0.0244 5: α (L)=0.01482 22: α (M)=0.00278
403.4 3	100	1014.4	4	609.0	2	E2	0.0342 8	$\alpha(\mathbf{K})=0.03443; \alpha(\mathbf{L})=0.0148222; \alpha(\mathbf{M})=0.00578$ $6; \alpha(\mathbf{N})=0.00097114; \alpha(\mathbf{O})=0.000191828$ $\alpha(\mathbf{P})=2.024\times10^{-5}29$ Mult.: from R _{ADO} =1.268, A ₂ =+0.255 (2011A:02)
433.2 5	2.5 10	2611.9	12+	2178.7	10+	E2	0.0457 7	$\alpha(K)=0.0299 \ 4; \ \alpha(L)=0.01186 \ 17; \ \alpha(M)=0.00301 \ 4; \ \alpha(N)=0.000773 \ 11; \ \alpha(O)=0.0001533 \ 22 \ \alpha(P)=1.637\times10^{-5} \ 24 \ Mult : from R : p_0=1.2, 2 \ (2011\Delta s02)$
449.0 5	7.4 12	2271.5	9	1822.5	8+ 6+	D		Mult.: from $R_{ADO} = 0.76 \ 11 \ (2011Aso2)$.
554.5 5	8.5 13	2377.0	10+	1822.5	8+	E2	0.0252 4	α (K)=0.01795 25; α (L)=0.00546 8; α (M)=0.001363 19; α (N)=0.000350 5; α (O)=7.02×10 ⁻⁵ 10 α (P)=7.85×10 ⁻⁶ 11 Mult.: from R _{ADO} =1.34 17 (2011As02).
574.4 5	3.8 11	2157.3	9	1582.9	8+	D		Mult.: from $R_{ADO} = 0.8.2$ (2011As02).
595.8 5	11 1	2178.7	10+	1582.9	8+	E2	0.02142 30	$ \begin{aligned} &\alpha(\mathbf{K}) = 0.01555\ 22;\ \alpha(\mathbf{L}) = 0.00443\ 6;\\ &\alpha(\mathbf{M}) = 0.001100\ 16;\ \alpha(\mathbf{N}) = 0.000282\ 4;\\ &\alpha(\mathbf{O}) = 5.68 \times 10^{-5}\ 8\\ &\alpha(\mathbf{P}) = 6.44 \times 10^{-6}\ 9 \end{aligned} $
609.0 <i>5</i>		609.0	2+	0.0	0+	E2	0.02041 29	Mult.: from R_{ADO} =1.32 <i>15</i> (2011As02). $\alpha(K)$ =0.01489 <i>21</i> ; $\alpha(L)$ =0.00416 <i>6</i> ; $\alpha(M)$ =0.001031 <i>15</i> ; $\alpha(N)$ =0.000265 <i>4</i> ; $\alpha(O)$ =5.34×10 ⁻⁵ 8 $\alpha(P)$ =6.07×10 ⁻⁶ 9 Mult.: from R_{ADO} =1.24 8, A ₂ =+0.34 5 (2011As02).
642.9 5	3.7 11	1981.7	7	1338.8	6+	D		Mult.: from $R_{ADO} = 0.6 2$ (2011As02).
670.5 [‡] 5	3.8 12	1684.9?		1014.4	4+			-

[†] From $\gamma(\theta)$, $R_{ADO}(I\gamma(39.3^{\circ})/I\gamma(76.6^{\circ}))$. Evaluators adopt E2 for stretched Q transitions due to their observed prompt character and assignment to the g.s. band. [‡] Placement of transition in the level scheme is uncertain.

 $^{214}_{\ 84} Po_{130}$

208 Pb(16 O,X γ) 2011As02

²¹⁴₈₄Po₁₃₀