Adopted Levels

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Shaofei Zhu and E. A. Mccutchan	NDS 175, 1 (2021)	1-May-2021

 $Q(\beta^{-})=5310 SY; S(n)=4500 SY; S(p)=10910 CA; Q(\alpha)=1210 CA$ 2021Wa16,2019Mo01

 $\Delta Q(\beta^{-})=450; \Delta S(n)=500 (2021Wa16).$

S(2n)=7390 (syst) 500; $Q(\beta^{-}n)=1920$ (syst) 400 (2021Wa16).

S(p), $Q(\alpha)$ and S(2p)=20440 (theory, 2019Mo01).

2010A124: ²¹⁴Hg nuclide was produced by the fragmentation of ²³⁸U at an energy of 1 GeV/nucleon on a ⁹Be target at GSI. Its identification was made on the basis of magnetic rigidity, velocity and time-of-flight, energy loss and its atomic number determined by FRagment Separatort (FRS) and associated detectors at different focal planes. The FRS magnet was tuned for ²¹⁰Au, ²¹⁶Pb, ²¹⁹Pb, ²²⁷At and ²²⁹At to be along its central trajectory. The probability of at least one of the events corresponding to ²¹⁴Hg was larger than 95%.

²¹⁴Hg Levels

E(level)	Iπ
L(IEVEI)	J

0

 0^+ $\%\beta^-=100; \%\beta^-n=?$

Only the β^- and β^- -delayed neutron decays are expected. Calculated $\%\beta^-n=10$ (2019Mo01).

T_{1/2}: Experimental lower limit: 300 ns based on the minimum time-of-flight through FRS (2006Ca30); Actual halflife is expected to be much longer based on calcuated half-life for β decay: 5.5 s (2019Mo01). Production σ =0.247 nb with 10% statistical and 20% systematic uncertainties (2010Al24).

Comments