²¹⁷Ra α decay 1970To07,1970Va13,2019Mi08 Type Author Citation Literature Cutoff Date Full Evaluation M. S. Basunia NDS 181, 475 (2022) 1-Jan-2022 Parent: 217 Ra: E=0.0; J^{π} =(9/2+); $T_{1/2}$ =1.6 μ s 2; $Q(\alpha)$ =9161 6; $\%\alpha$ decay=100.0 Others: 2021Hu19, 1990An19, 1990AnZU. 1970To07: ²²¹Th was produced from ²⁰⁸Pb(¹⁶O,3n), E=10.6 MeV/nucleon, 99% enriched ²⁰⁸Pb target, alpha spectra were obtained on-line using the helium-jet recoil transport method for ²²¹Th decay chain, Si(Au) detector. Measured Eα, T_{1/2}; deduced Oα. FWHM = 25 keV. 1970Va13: 221 Th was produced bombarding different targets with different projectiles, measured E α of the 221 Th decay chain. Deduce t, Q. 2019Mi08: Studied ²²⁵U α decay chain, produced by the fusion evaporation reactions of E=212, 217, and 226 MeV (mid-target) ⁴⁸Ca beams on a ≈530 μg/cm² ¹⁸¹Ta target sandwiched between carbon layers of 50 μg/cm² upstream and 10 μg/cm² downstream. Evaporation residues (ERs) were separated by the SHIP velocity filter and implanted into the COMPAct Spectroscopy Set-up (COMPASS), consisting of a Double sided Silicon Strip Detector (DSSD), surrounded by 4 Single sided Silicon Strip Detectors (SSSDs). Measured energy and time spectra of correlations between ER and α particles from subsequent decays. Deduced halflife. ## ²¹³Rn Levels E(level) J^{π} $T_{1/2}$ Comments 0.0 $(9/2^+)$ 19.4 ms 2 J^{π} , $T_{1/2}$: From Adopted Levels. ## α radiations 2019Mi08 reported two E α of values 8990 keV 40 (8.99 MeV 4) and 8910 keV 40 (8.91 MeV 4). 8990 α is in good agreement with the literature value for the 217 Ra g.s. to 213 Rn g.s. decay. The other 8910 α , if considered to decay from 217 Ra g.s., it would feed an excited level at about 84 keV 41 (deduced from $Q\alpha(^{221}$ Ra) and $E\alpha$). 2019Mi08 did not propose any depopulation or feeding level for this $E\alpha$, and no known excited levels in 217 Ra or 213 Rn are matching for the decay of this $E\alpha$. | Εα | E(level) | $I\alpha^{\ddagger}$ | HF [†] | Comments | |--------|----------|----------------------|-----------------|---| | 8992 8 | 0.0 | 100 | 1.69 22 | Eα: Weighted average of 8990 8 (1970To07, semi), 8995 10 (1970Va13, semi), 8990 40 (2019Mi08 – 8.99 MeV 4), and 8988 26 (2019Ya04). Uncertainty is the lowest input value. Other: 8966 15 (2021Hu19). | [†] Using $r_0(^{213}\text{Rn})=1.5526$ 27, extrapolated value based on $r_0(^{212}\text{Rn})=1.5433$ 36 and $r_0(^{214}\text{Rn})=1.5655$ 13 (2020Si16). $^{^{217}}$ Ra-J $^{\pi}$: From 2018Ko01 (A=217 evaluation). ²¹⁷Ra-T_{1/2}: from 8995 α (t) (1970Va13 – good statistics). Others: 1.7 μ s 3 (1990An19 – appears to supersede their earlier value 1.7 us I (1990AnZU)), 1.4 μ s +4–3 (2019Ya04), 4 μ s 2 (1970To07), and 2.5 μ s 2 (2019Mi08 – from time correlations between ²²¹Th and ²¹⁷Ra α decays). Weighted average of all the data, without 2.5 μ s 2 (2019Mi08) yields the same value. $^{^{217}}$ Ra-Q(α): From 2021Wa16. [‡] Absolute intensity per 100 decays.