²¹³Ra IT decay (2.18 ms) 1976Ra37,1994Ne01,2006Ku26

History						
Туре	Author	Citation	Literature Cutoff Date			
Full Evaluation	M. S. Basunia	NDS 181, 475 (2022)	1-Jan-2022			

Parent: ²¹³Ra: E=1770 5; $J^{\pi}=(17/2^{-})$; $T_{1/2}=2.18$ ms 5; %IT decay=99.4 4

Others: 2004He25, 1993Ne04.

1976Ra37: The decay scheme is given as constructed by 1976Ra37. Measured $\gamma\gamma$ coin.

1994Ne01: Measured g factor for the 17/2⁻ isomeric state using an indirect method that is the ratio of Korringa constant for two isomers is proportional to the inverse ratio of the respective g factors.

2006Ku26: ²¹³Ra isotope produced by ⁴⁸Ca(¹⁷⁰Er,5n), E=4.25, 4.30 MeV/nucleon, and ⁵⁰Ti(¹⁷⁰Er,X), 4.35 MeV/nucleon, reactions. Evaporation residues were separated in-flight with the velocity filter SHIP. Measured $E\gamma$, $I\gamma$, $\gamma\gamma$, ce, lifetimes using a 16-strip PIPS detector and a Ge-Clover detector placed behind the pips.

2004He25: ²⁰⁸Pb(¹²C,7n), E=68-136 MeV; measured prompt and delayed Ey, Iy, yy-coin, (recoil)y-coin; Deduced levels, spin, parity, half-life.

1993Ne04: Determined the static-quadrupole-interaction frequency of the 17/2⁻ isomeric state using level-mixing-spectroscopy (LEMS).

2004He25: Measured half-life of the $(17/2^{-})$ isomeric state.

x-rays:	1976Ra37	7	
	~	-	~

-rays: 1976Ra3			
E(x ray)	I γ (relative)		
85.4	4.2 3	$K\alpha_2$	x ray
88.5	6.2 4	$K\alpha_1$	x ray
100.0	2.1 3	$K\beta_1'$	x ray
103.0	0.7 2	$\mathtt{K}\beta_2'$	x ray

²¹³Ra Levels

E(level) [†]	J^{π}	T _{1/2}	Comments
0.0	1/2-	2.73 min 5	J^{π} , $T_{1/2}$: From Adopted Levels.
546.35 5	$(5/2^{-})$	21.5 ps 28	$T_{1/2}$: From Adopted Levels.
			J^{π} : 546.35 γ E2 to 1/2 ⁻ state.
1608.85 <i>21</i>	$(9/2^{-})$		J^{π} : 1062.5 γ (E2) to (5/2 ⁻) state.
1769.72 22	$(13/2^{-})$		J^{π} : 160.8 γ E2 to (9/2 ⁻) state requires (13/2 ⁻), in 1976Ra37 J^{π} is given as (13/2 ⁻ , 11/2 ⁻).
1770 5	$(17/2^{-})$	2.18 ms 5	$\% \alpha = 0.6 \ 4$
			E(level): From 1770 +5–1 (2006Ku26). Others: \approx 1770 (1976Ra37), 1769 7 can be deduced considering E α =8467 5 and E α =6731 5 (1976Ra37) from the isomeric level and g.s. ²¹³ Ra α decay, respectively, to the g.s. of ²⁰⁹ Rn.
			J^{π} : Measured g=0.87 5 (1994Ne01) value supports the configuration
			$[(\pi 1h_{9/2}^2)_{8+} \otimes (\nu 3p_{1/2}^{-1})]_{17/2-}$ for which the calculated magnetic moment, 7.672 33, is in good agreement with the measured g value (1994Ne01).
			T _{1/2} : Weighted average of 2.1 ms <i>l</i> (1976Ra37), 2.20 ms <i>5</i> (2006Ku26), and 2.2 ms <i>l</i> (545.4 γ) (2004He25) – uncertainty is the lowest input value. 2004He25 also reported two more values of 2.1 ms <i>l</i> (1061.2 γ) and 2.1 ms <i>l</i> (160.4 γ). All three values determined by 2004He25 from the decrease of γ -ray intensities within the 14.6 ms pause between two consecutive beam bursts.
			consecutive beam bursts.

 $%\alpha$: 0.6 4 (2006Ku26) and 0.6 (1976Ra37 − also ≈1).

[†] From E γ , except where otherwise noted.

²¹³Ra IT decay (2.18 ms) 1976Ra37,1994Ne01,2006Ku26 (continued)

 $\gamma(^{213}\text{Ra})$

I γ normalization: Absolute I γ deduced by the evaluator equating the total transition intensity for each of the 546.35, 1062.5, and 160.87 cascading γ 's to the 99.4 4 IT decay branching. Measured I γ used to deduced the absolute intensities is listed in the comments.

E_{γ}^{\dagger}	Ι _γ ‡&	E _i (level)	\mathbf{J}_i^{π}	E_f	${ m J}_f^\pi$	Mult. [#]	$\alpha^{@}$	Comments
(<6) 160.87 5	42.2 24	1770 1769.72	(17/2 ⁻) (13/2 ⁻)	1769.72 1608.85	(13/2 ⁻) (9/2 ⁻)	[E2] E2	1.328	E _γ : From level scheme. α(K)exp=0.25 2 (1976Ra37) α(K)exp=0.26 6 (2006Ku26) α(K)=0.237 4; α(L)=0.802 12; α(M)=0.217 3 α(N)=0.0575 8; α(O)=0.01227 18; α(P)=0.00180 3; α(Q)=1.314×10 ⁻⁵ 19 E _γ : Others: 160.4 5 (2004He25), 161.2 1 (2006Ku26). In 1976Ra37, a transition ≈161γ was shown in Fig. 7 to feed the level at 1608.85 (9/2 ⁻), but argued it would not depopulate the isomeric state (J ^π =(17/2 ⁻)) as an E2 transition.
546.35 5	93.0 11	546.35	(5/2 ⁻)	0.0	1/2-	E2	0.0315	$I_{\gamma}(rel)=43.5 25: Weighted average of 46 2(1976Ra37) and 41 2 (2006Ku26).α(K)exp=0.02 1 (1976Ra37)α(K)exp=0.024 9 (2006Ku26)α(K)=0.0212 3; α(L)=0.00763 11;α(M)=0.00195 3α(N)=0.000513 8; α(O)=0.0001131 16;α(P)=1.82×10-5 3; α(Q)=7.70×10-7 11Eγ: Others: 545.4 5 (2004He25), 546.2 1(2006Ku26).$
1062.5 2	98.4 27	1608.85	(9/2 ⁻)	546.35	(5/2 ⁻)	(E2)	0.00802	$\begin{aligned} &(1976\text{Ra37}) \text{ and } 100 \ I \ (2006\text{Ku26}). \\ &\alpha(\text{K})\text{exp}=0.005 \ I0 \ (1976\text{Ra37}) \\ &\alpha(\text{K})\text{exp}=0.014 \ 9 \ (2006\text{Ku26}) \\ &\alpha(\text{K})=0.00624 \ 9; \ \alpha(\text{L})=0.001342 \ I9; \\ &\alpha(\text{M})=0.000327 \ 5 \\ &\alpha(\text{M})=8.61\times10^{-5} \ I2; \ \alpha(\text{O})=1.94\times10^{-5} \ 3; \\ &\alpha(\text{P})=3.27\times10^{-6} \ 5; \ \alpha(\text{Q})=2.11\times10^{-7} \ 3 \\ \text{E}_{\gamma}: \text{Others: } 1061.2 \ 5 \ (2004\text{He25}), \ 1062.1 \ I \\ &(2006\text{Ku26}). \\ &I\gamma(\text{rel})=99.4 \ 27: \text{ Weighted average of } 100 \ 3 \\ &(1976\text{Ra37}) \ \text{and } 97 \ 6 \ (2006\text{Ku26}). \end{aligned}$

[†] Measurements of 1976Ra37 (semi).

[‡] Deduced by evaluator (see normalization comments) using the $I\gamma$ (rel) listed in comments.

[#] Proposed in 1976Ra37 based on α (K)exp data.

[@] Additional information 1.

[&] Absolute intensity per 100 decays.

²¹³₈₈Ra₁₂₅