217 Rn α decay

Type Author Citation Literature Cutoff Date

Full Evaluation M. S. Basunia NDS 181, 475 (2022) 1-Jan-2022

Parent: 217 Rn: E=0.0; $J^{\pi}=9/2^{+}$; $T_{1/2}=0.59$ ms 6; $Q(\alpha)=7887.2$ 29; $\%\alpha$ decay=100.0

 $\alpha \gamma$: no $(7735\alpha)(\gamma, L \text{ x ray}) (1961\text{Ru}06)$.

Another α peak at 7.50 MeV with an intensity of 0.1% was observed by 1961Ru06. The energy difference from the 7741-keV α , including the recoil, yields 243 keV for the level energy, if the 7500-keV α is from 217 Rn decay. The first excited state in 213 Po has been observed at 293 keV in 213 Bi decay. The observed α peak at 7.50 MeV may be due to an impurity; no positive identification could be made by 1961Ru06.

²¹³Po Levels

E(level) J^{π} $T_{1/2}$ Comments 0.0 $9/2^{+}$ $3.706 \,\mu s \, I$ J^{π} , $T_{1/2}$: From Adopted Levels.

α radiations

Eα E(level) $Iα^{\ddagger}$ HF^{\dagger} Comments

7738 3 0.0 100 1.7 2 Eα: Weighted average of 7741 4 (1982Bo04 – Eα=7739 keV 4 in 1982Bo04 is increased by 2 keV, as recommended by 1991Ry01 for a change in calibration energy) and 7735 4 (1961Ru06). Other measured values: Eα=7740 10 (2018Sa45 – 7.74 MeV 1), 7740 30 (1951Me10 – 7.74 MeV 3), 7740 (1949Me54 – 7.74 MeV).

 $^{^{217}}$ Rn-J $^{\pi}$: From 2018Ko01 (A=217 evaluation).

 $^{^{217}}$ Rn- $T_{1/2}$: Weighted average of 0.54 ms 5 (1961Ru06) and 0.67 ms 6 (2018Sa45). Others: ~1 ms (1949Me54), 1.0 ms *I* (1951Me10), and 0.54 ms 5 in 2018Ko01 (A=217 evaluation).

[†] Using $r_0(^{213}Po)=1.5632$ 26, unweighted average of $r_0(^{212}Po)=1.5658$ 6 (assuming 1.56580 59 in 2020Si16 – listed as 1.5658 59) and $r_0(^{214}Po)=1.5606$ 7 (2020Si16).

[‡] Absolute intensity per 100 decays.