208 Pb(18 O,X γ) **2011As05**

History										
Туре	Author	Citation	Literature Cutoff Date							
Full Evaluation	M. S. Basunia	NDS 181, 475 (2022)	1-Jan-2022							

Adapted/Edited the XUNDL dataset compiled by B. Singh (McMaster); Mar 05, 2011.

E=85 MeV from Vivitron tandem of IReS (Strasbourg). Measured E γ , I γ , $\gamma\gamma$ coin, $\gamma(\theta)$ (ADOs) using Euroball IV array with 71 Compton- suppressed Ge detector systems (15 clusters, 26 clovers and 30 tapered single-Ge detectors; cluster is composed of seven large volume Ge crystals and a clover of four smaller Ge crystals; thus a total 239 individual Ge crystals). Some revisions proposed for J^{π} assignments of low-spin levels of ²¹³Po populated in the β^{-} decay of ²¹³Bi.

Measured $\sigma \approx 0.3$ mb for the production of ²¹³Po in the reaction used. From this low cross section, 2011As05 proposed that levels in ²¹³Po were populated by neutron emission of high-lying levels in ²¹⁴Po for which the production cross section σ =0.5-1 mb.

Proposed revisions of J^{π} assignments in ²¹³Bi decay: 293 level: 7/2⁺ instead of (11/2⁺); 440 level: 11/2⁺ instead of (7/2⁺); 868 level: 9/2⁺ instead of (13/2⁺), for $J^{\pi}=13/2^+$, it was expected to be populated in the 2011As05 work.

²¹³Po Levels

E(level) [†]	J ^{π#}	Comments
0.0‡	9/2+	
645.6 [‡] 5	$13/2^{+}$	
1068.4 [‡] 2	$17/2^{+}$	
1357.4 [‡] 2	$21/2^+$	
1412.9 5		
1503.6 5	$(25/2^+)$	Possible configuration: π (h _{9/2} ⁺) $\approx v$ (g _{9/2} ⁺), π h _{9/2} ² $\approx v$ i _{11/2} (2011As05 – probably a misprint).
1619.1 5	$(23/2^+)$	
1779.6 4		
2017.2 7		

[†] From $E\gamma$ data.

[±] Yrast sequence. Possible configuration: $9/2^+$: ν ($g_{9/2}^{+1}$), $13/2^+$: ν ($g_{9/2}^{+1}$) $\otimes 2^+$, $17/2^+$: ν ($g_{9/2}^{+1}$) $\otimes 4^+$, and $21/2^+$: ν ($g_{9/2}^{+1}$) $\otimes 6^+$.

[#] Proposed by 2011As05 based on γ -ray multipole assignments.

γ ⁽²¹³Po)

E_{γ}^{\dagger}	I_{γ}	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_f^{π}	Mult. [‡]	α [#]	Comments
146.2 5	8 2	1503.6	(25/2+)	1357.4	21/2+	(E2)	1.512 29	$\alpha(K)=0.313 5; \alpha(L)=0.889 19; \alpha(M)=0.237 5$ $\alpha(N)=0.0607 13; \alpha(O)=0.01159 24;$ $\alpha(P)=0.001061 22$ $\alpha(exp)=1.5 5 (0.15 5 in 2011As05 probably a misprint).$ Mult.: Proposed by 2011As05 based on $\alpha(exp)$, extracted from intensity imbalances measured in spectra in double coincidence with the 146 keV transition and either the 423 or the 646 keV transition
261.7 5	4.8 14	1619.1	$(23/2^+)$	1357.4	$21/2^{+}$			
289.0 <i>1</i> 344.5 5 398 1 5	60 <i>10</i> 15 5 3 5 <i>1</i> 2	1357.4 1412.9 2017 2	21/2+	1068.4 1 1068.4 1	$17/2^+$ $17/2^+$ $(23/2^+)$	Q		R _{ADO} =1.3 2.
422.8 <i>1</i> 645.6 <i>5</i> 711.2 <i>3</i>	100 24 <i>6</i>	1068.4 645.6 1779.6	17/2 ⁺ 13/2 ⁺	645.6 0.0 1068.4	13/2 ⁺ 9/2 ⁺ 17/2 ⁺	Q Q		R _{ADO} =1.18 <i>10</i> . R _{ADO} =1.25 <i>10</i> .

Continued on next page (footnotes at end of table)

²⁰⁸Pb(¹⁸O,Xγ) **2011As05** (continued)

$\gamma(^{213}\text{Po})$ (continued)

[†] 2011As05 state uncertainty as 0.1-0.5 keV. The evaluator assigns as follows: 0.1 keV for intense γ rays (I γ >40), 0.3 keV for I γ =20-40, 0.5 keV for I γ <20.

[‡] Assigned by the evaluator, except where otherwise noted, based on the angular anisotropy ratio, $R_{ADO}=I\gamma(39.3^{\circ})/I\gamma(76.6^{\circ})$, with respect to the beam axis for the most intense γ rays. It appears that for a quadrupole transition $R_{ADO} \sim 1.2$ was expect, not mentioned in 2011As05.

Additional information 1.

²¹³₈₄Po₁₂₉