217 Ac α decay (69 ns)

Type Author Citation Literature Cutoff Date

Full Evaluation M. S. Basunia NDS 181, 475 (2022) 1-Jan-2022

Parent: ²¹⁷Ac: E=0.0; $J^{\pi}=9/2^{-}$; $T_{1/2}=69$ ns 4; $Q(\alpha)=9832$ 10; % α decay=100.0

²¹⁷Ac-T_{1/2}: from 1985De14 α (t) (earlier value 72 ns 5 in 1981MaYW). Others: 75 ns 3 (1982GoZU); 111 ns 7 (1973No09, from α (t), previous value was 0.10 μ s 1 in 1972No06 – due to pulsed beam of ~100 ns, possibly missed the long-lived component of g.s. decay – noted in 1985De14), 150 ns +370–60 (2019Mi08). Adopted T_{1/2} in 2018Ko01 (A=217 evaluation) is also 69 ns 4. ²¹⁷Ac-O(α): From 2021Wa16.

²¹³Fr Levels

E(level) J^{π} $T_{1/2}$ Comments 0.0 $9/2^{-}$ 34.17 s 6 J^{π} , $T_{1/2}$: From Adopted Levels.

α radiations

No strong γ transitions belonging to ²¹³Fr were observed by 1973No09. The observed 9650-keV α has been assigned as the transition to the ²¹³Fr g.s. by considering the Q(α) systematics and the known levels in ²¹³Fr.

 α angular distribution was measured by 1973No09 following production of 217 Ac in the 207 Pb(14 N,4n) reaction where nuclear alignment is expected to be preserved during its short (69 ns) half-life. The angular distribution was found to be isotropic within 2%, indicating that the 9650 α has mainly L=0 component.

 Eα
 E(level)
 $Iα^{\ddagger}$ HF^{\dagger} Comments

 9650 10
 0.0
 100
 1.0 I
 Eα: from 1973No09 (semi). Others: 9870 keV (1982SaZO), 9300 keV 200 (2019Mi08 – 9.3 MeV 2).

 $^{^{217}}$ Ac-J^{π}: From 2018Ko01 (A=217 evaluation).

[†] Using $r_0(^{213}\text{Fr})=1.5460\ 27$, unweighted average of $r_0(^{212}\text{Rn})=1.5433\ 36$ and $r_0(^{214}\text{Ra})=1.5487\ 30\ (2020\text{Si}16)$.

[‡] Absolute intensity per 100 decays.