208 Pb(7 Li,2n γ), 209 Bi(18 O, 14 C γ) 1980Sj01,1981Bo29

History						
Type Author		Citation	Literature Cutoff Date			
Full Evaluation	M. S. Basunia	NDS 181, 475 (2022)	1-Jan-2022			

1980Sj01: ²⁰⁸Pb(⁷Li,2n γ) E=30-34 MeV, (pulsed beam); measured: E γ , I γ , E α , $\alpha\gamma$, $\gamma\gamma$, $\gamma(\theta)$. 1981Bo29: ²⁰⁹Bi(¹⁸O,¹⁴C γ) E=79 MeV (pulsed beam); measured: E α , E γ , T_{1/2}. Level scheme was not presented. Others:

 $2009\text{Vi}09 - {}^{208}\text{Bi}({}^{9}\text{Li},4n\gamma)$ - measured fusion cross section.

 $\frac{2013\text{ViO} - 208\text{Bi}(^{11}\text{Li},^{6}\text{n}\gamma) - \text{measured fusion cross section.}}{2013\text{So}(1 - 208\text{Bi}(^{11}\text{Li},^{6}\text{n}\gamma) - \text{measured fusion cross section.}}$ $\frac{2015\text{So}(1 - 208\text{Pb}(^{18}\text{O},^{11}\text{B}) - \text{measured differential cross section } d\sigma/d\Omega = 1.2 \text{ mb/sr } 3.$ $\frac{1980\text{Me05: } ^{208}\text{Pb}(^{16}\text{O},^{11}\text{B}) = 140-312 \text{ MeV}; \text{ population of continuum states was analyzed.}$

²¹³At Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments		
0.0	9/2-	125 ns 6	Configuration: π (h ⁺¹ _{9/2} . T _{1/2} : From Adopted Levels.		
340.5 3	(7/2 ⁻ ,9/2 ⁻)	≤5.5 [#] ns			
724.6 3	13/2-	≤5.5 [#] ns	Configuration: π (h ⁺¹ _{0/2} $\otimes 2^+$.		
1111.3 5	15/2-	≤5.5 [#] ns			
1129.7 5	$(17/2^{-})$	≤5.5 [#] ns	Configuration: π (h ⁺¹ _{9/2} \otimes 4 ⁺ .		
1318.1 6	$(19/2^{-})$	≤5.5 [#] ns			
1318.1+x		110 ns <i>17</i>	E(level): Other: 1358 23 (2021Ko07 – NUBASE). All gammas, except the 340.5-keV γ , had delayed components. The 386.7-, 405.1- and 724.6-keV gammas also showed prompt peak in their time spectra; however, existence of any prompt component in 188.4-keV γ could not be excluded (1980Sj01). The 110-ns state, therefore, is at or above 1318.1 keV.		

T_{1/2}: from τ =159 ns 25 (386.7 γ)(t) (1980Sj01). The authors also measured (405 γ)(t) and obtained τ =163 ns 14 for its ²¹³At component and τ =25 ns 9 for the ²¹²Po component.

[†] Deduced by evaluator from a least square fit to the γ -ray energies.

[‡] Assignments are from 1980Sj01, based on γ -ray multipolarity deduced from $\gamma(\theta)$.

[#] From 1980Sj01.

$\gamma(^{213}\text{At})$

E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [#]	α [@]	Comments
(18.4)		1129.7	(17/2 ⁻)	1111.3 15/2-			Transition was not observed. Its existence is inferred from the observed $(188.4)(386.7\gamma)$ coincidences $(1980Sj01)$.
188.4 <i>3</i>	13 2	1318.1	(19/2 ⁻)	1129.7 (17/2 ⁻)	D		$A_2=-0.21$ 7 (1980Sj01) It was not possible to exclude the prompt component of 188.4 γ due to higher Compton background at this energy region (1980Sj01).
340.5 3	40 4	340.5	(7/2 ⁻ ,9/2 ⁻)	0.0 9/2-	(M1,E2)	0.24 15	A ₂ =+0.14 4 (1980Sj01) α (K)=0.18 14; α (L)=0.043 14; α (M)=0.0104 28 α (N)=0.00270 72; α (O)=5.7×10 ⁻⁴ 17; α (P)=7.3×10 ⁻⁵ 28 $\Gamma = 0.00270 + 0.00270$ (1091D=20)
386.7 <i>3</i>	27 3	1111.3	15/2-	724.6 13/2-	(M1+E2)	0.17 11	$A_2 = -0.35 \ 6 \ (1980 B029).$ $\alpha(K) = 0.132 \ 93; \ \alpha(L) = 0.029 \ 11; \ \alpha(M) = 0.0071$ 23

Continued on next page (footnotes at end of table)

208 Pb(7 Li,2n γ), 209 Bi(18 O, 14 C γ) 1980Sj01,1981Bo29 (continued)

$\gamma(^{213}\text{At})$ (continued)

E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. [#]	α [@]	Comments
405.1 <i>3</i>	33 9	1129.7	(17/2 ⁻)	724.6 13/2-	(E2)	0.0568	$\begin{aligned} \alpha(N) &= 0.00183\ 59;\ \alpha(O) &= 3.8 \times 10^{-4}\ 14;\\ \alpha(P) &= 5.0 \times 10^{-5}\ 22\\ E_{\gamma}:\ Other:\ 388.8\ (1981Bo29).\\ A_2 &= +0.21\ 5\ (1980Sj01 - for\ doublet)\\ \alpha(K) &= 0.0354\ 5;\ \alpha(L) &= 0.01600\ 23;\ \alpha(M) &= 0.00410\ 6\\ \alpha(N) &= 0.001061\ 16;\ \alpha(O) &= 0.000215\ 3;\\ \alpha(P) &= 2.49 \times 10^{-5}\ 4\\ E_{\gamma}:\ Other:\ 405\ 1\ (1981Bo29). \end{aligned}$
724.6 3	100 <i>10</i>	724.6	13/2-	0.0 9/2-	(E2)	0.01473	I _γ : γ overlapped with 405-keV transition in ²¹² Po, and I _γ =58 was measured for the total peak. The ²¹³ At and ²¹² Po components were deduced by 1980Sj01 from γγ-coincidence measurements. A ₂ =+0.28 5 (1980Sj01) α (K)=0.01106 <i>16</i> ; α (L)=0.00278 <i>4</i> ; α (M)=0.000683 <i>10</i> α (N)=0.0001766 25; α (O)=3.67×10 ⁻⁵ 6; α (P)=4.64×10 ⁻⁶ 7 E _γ : Other: 725.2 (1981Bo29).

[†] From 1980Sj01. Assignments to ²¹³At were made from the observed (9.08-MeV α from ²¹³At g.s.)(γ) and $\gamma\gamma$ -coincidences. [‡] Relative photon intensity, from 1980Sj01, normalized to I γ =100 for 724.6 γ .

[#] From 1980Sj01 based on γ -ray angular distributions by assuming that the states were aligned and that the dominant γ rays proceed via yrast levels by stretched transitions. Lifetime information was considered to eliminate higher multipolarities. (M1,E2) multipolarities in 1980Sj01 are presented as (M1+E2) here.

[@] Additional information 1.

 $^{213}_{\ 85}{\rm At}_{128}$