(HI,xnγ) 2009Dr12,2008Dr01,1988St17

	Histor	У	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	K. Auranen and E. A. Mccutchan	NDS 168, 117 (2020)	1-Aug-2020

2009Dr12,2008Dr01: nuclei of interest were produced in a 204 Hg(13 C,5n) 212 Rn fusion-evaporation reaction using 204 Hg enriched oxide target. The pulsed (1 ns wide pulses separated by 856 ns) beam was provided by the 14UD Pelletron accelerator at the Australian National University with an energy of 89 MeV (above the peak cross section of *5n* channel to enhance the high-spin population). E γ , I γ , $\gamma\gamma$ -coin, $\gamma(\theta)$ were measured using the CAESAR array of six compton suppressed Ge detectors and one LEPS detector. For the second phase of the experiment three large-volume Ge and one more LEPS detector were added to the setup. See also 1990Dr07 and 1990Dr12 from the same laboratory.

1988St17: nuclei of interest produced in ²⁰⁸Pb(⁹Be,5n) reaction with E=45-60 MeV and ²⁰⁴Hg(¹³C,5n) reaction with E=72-75 MeV. Measured E γ , I γ , $\gamma\gamma(t)$, $\gamma(\theta)$, Ece, Ice.

1979Ho06, 1977Ho17: nuclei of interest were produced in a 204 Hg(13 C,5n) 212 Rn fusion-evaporation reaction at the Chalk River MP tandem Van de Graaff facility with beam energies of 72 to 86 MeV. Measured E γ , I γ , $\gamma\gamma$, $\gamma\gamma(t)$, I $\gamma(\theta)$, $\gamma(pol)$ and g-factors. I $\gamma(\theta)$ measured with two Ge(Li) detectors, one fixed at 90°, one movable. $\gamma(pol)$ from three Ge(Li) crystal Compton polarimeters. g-factor from time-dependent perturbed angular correlation technique, magnetic fields up to 3 T.

Others: 1989Lo02, 1978Ha50, 1976Ha62, 1975Wi01, and 1971MaXH.

All data are from 2009Dr12 unless otherwise specified.

 α : Additional information 1.

²¹²Rn Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0	0^{+}		configuration= $\pi h_{\alpha\alpha}^4$.
1273.70 10	2+		$configuration = \pi h^{4/2}$
1501.40 14	4+	8.80 ns 35	$T_{1/2}$: from 1988St17.
			g=1.01 6 (1988St17, TDPAD).
			configuration = $\pi h_{0/2}^4$.
1639.70 <i>17</i>	6+	118 ns 14	$T_{1/2}$: from 1988St17. Other: 165 ns 15 (1971MaXH).
			g=0.909 8 (1988St17, TDPAD).
			$configuration = \pi h_{0/2}^4$.
1693.9 <i>3</i>	8+	0.91 µs 3	$T_{1/2}$: weighted average of 0.82 μ s 6 (1988St17), 0.92 μ s 2 (1976Ha62), and 1.0 μ s 1 (1971MaXH).
			g=+0.894 2 from 1977Ho17 (sign from 1975Wi01). Others: 0.895 7 (1988St17), +0.911 12 (1975Wi01), 0.89 3 (1971MaXH).
			configuration= $\pi h_{0/2}^4$.
2115.9 4	8+		$configuration = \pi (h_{0/2}^3 f_{7/2}).$
2306.2? 10	(6^{+})		E(level): from 1988St17, not seen in 2009Dr12.
			$configuration = \pi h_{9/2}^4$.
2654.7 4	10^{+}		$configuration = \pi h_{\alpha/2}^{4/2}$.
2696.0 5	(8)		$configuration = \pi h_{\alpha/2}^{4/2}$.
2760.4 4	11-	5.5 ns 2	$T_{1/2}$: from 1988St17. Other: <2 ns (1989Lo02).
			$configuration = \pi(h_{9/2}^3 i_{13/2}).$
2881.1 4	12^{+}	2.08 ns 14	$T_{1/2}$: from 1988St17. Other: 2.0 ns (1977Ho17).
			configuration= $\pi h_{9/2}^4$.
2967.0 5	(12^{+})		
3066.1 4	10^{+}		$configuration = \pi(h_{9/2}^3 f_{7/2}).$
3278.0 4	11^{+}		configuration= $\pi(h_{9/2}^{3'}f_{7/2})$.
3297.5 4	12^{+}		configuration= $\pi(h_{9/2}^{3'}f_{7/2})$.
3357.3 4	14^{+}	7.4 ns 9	$T_{1/2}$: from 1988St17. Other: 8 ns (1977Ho17).
			$g=1.07 \ 3 \ (1988St17).$
			configuration= $\pi(h_{g/2}^3 f_{7/2})$.
3510.0 5	(13^{+})		configuration= $\pi(h_{9/2}^{3}f_{7/2})$.
3734.9 4	13-		$configuration = \pi(h_{9/2}^{3'}i_{13/2}).$
3990.7 4	15-		configuration= $\pi(h_{q/2}^{3/2}i_{13/2})$.

Continued on next page (footnotes at end of table)

²¹²Rn Levels (continued)

E(level) [†]	Jπ‡	T _{1/2}	Comments
3997.8.5	(14^{-})		configuration = $\pi(h_{0}^3, i_{12/2})$.
4066.4 4	17-	28.9 ns 14	$T_{1/2}$: from 1988St17. Other: 28 ns (1977Ho17).
			$g=1.05 \ l \ (1977Ho17,1988St17).$
			configuration= $\pi(h_{0/2}^3 i_{13/2})$.
4134.3 4	16-		configuration= $\pi(h_{0/2}^{3/2}i_{13/2})$.
4151.0 4	15^{-}		configuration= $\pi(h_{0/2}^{3/2}i_{13/2})$.
4582.1 4	17^{-}		configuration= $\pi(h_{0/2}^{3/2}i_{7/2}i_{13/2})$.
4929.2 4	(16^{-})		configuration= $\pi(h_{0/2}^{2/2}i_{1/2}i_{1/2})$.
5113.9 4	18-		configuration= $\pi(h_{0/2}^{3/2}f_{7/2}i_{13/2})$.
5356.9 4	(18^{+})		configuration= $\pi(h_{0/2}^{2/2}; \frac{1}{1}; \frac{1}{2})$.
5426.7 4	(20^{+})	5.2 ns 5	configuration= $\pi(h_{0/2}^{3/2}i_{13/2})$.
			$T_{1/2}$: from 1988St17.
5771.5 4	19-		configuration= $\pi(h_{9/2}^3 f_{7/2}) \otimes \nu(p_{1/2}^{-1} g_{9/2}).$
5794.2 <i>4</i>	(19+)		configuration= $\pi(h_{9/2}^{2/2}i_{13/2}^{2})$.
6166.5 4	20^{+}		configuration= $\pi(h_{9/2}^{3/2}i_{13/2}) \otimes \nu(p_{1/2}^{-1}g_{9/2}).$
6174.0 <i>4</i>	22^{+}	101.8 ns 32	configuration= $\pi(h_{9/2}^{3'}i_{13/2})_{17-} \otimes \nu(p_{1/2}^{-1}g_{9/2}).$
			$T_{1/2}$: weighted average of 101.2 ns 35 (2009Dr12, e-mail communications with the authors
			and B. Singh) and 104 ns 7 (1988St17). Others: 113 ns 6 (1977Ho17, uncertainty from
			1976McZD).
(700.1.4	a a+		g=0.72 <i>I</i> (197/Ho17,1988St17).
6709.14	23		configuration= $\pi(h_{9/2}^{0}1_{13/2})_{17-} \otimes \nu(p_{1/2}^{-1}1_{11/2}).$
6821.2.5	23	10.0	configuration= $\pi(h_{9/2}^{\circ}, 1_{13/2}) \otimes \nu(f_{5/2}^{\circ}, g_{9/2}).$
/141.8 4	25	18.0 ns 6	configuration= $\pi(h_{9/2}^{-1}t_{13/2}^{-1})_{20+} \otimes v(p_{1/2}g_{9/2}).$
			$r_{1/2}$: from 19//H01/, uncertainty from 19//H02Q. $r_{-0.71/2}$ (1077Ho17)
7177 5 5	$24^{(+)}$		$configuration = \pi(h^3 i \log n) = \Re(h^{-1} \log n)$
7524 4 4	24		configuration $-\pi(\ln_{9/2} 1_{13/2})_{1/2} \otimes v(n_{5/2} g_{9/2}).$
7818.0 /	$25^{-26^{-}}$		configuration $-\pi(h_{9/2}^2 + i_{1/2}^2) \rightarrow \nu(f_{7/2} + i_{1/2}^2)$
7862.6.4	20		$configuration = \pi(\ln_{9/2} n_{13/2}) \otimes \nu(n_{5/2} g_{9/2}).$
7878 1 1	20	14 ns 4	configuration $-\pi(n_{9/2} + 1_{3/2}) = 0$ $(15/2) + 5/2 = 0$
/0/0.1 4	27	14 115 4	$T_{1/2}$: from 1977Ho17 uncertainty from 1977Ho70
			$g=0.63 3 (1977H_017)$, uncertainty from 1977H02Q.
8361.7.5	(27^{-})		configuration= $\pi(h_{0,2}^3 i_{1,2/2})_{1,7-\infty} \nu(f_{0,2}^{-1} i_{1,5/2})$.
8497.1 4	28+		configuration= $\pi(h_{0}^{2}(p_{1}^{2}(p_{1}))) = \chi(p_{1}^{2}(p_{1}))$
8557.1 4	$28^{(+)}$		J^{π} : parity from E2 multipolarity of 21.9-keV transition. See detailed comments about
			multipolarity of 21.9-keV transition from 8579 level. 2009Dr12 assign 28 ⁽⁻⁾ from
			comparison with shell-model calculations.
			for a (28^-) level predicted at 8670 keV, configuration = $\pi(h_{0/2}^2f_{7/2}i_{13/2})_{18-}\otimes$
			$v(p_{1/2}^{-2}g_{9/2}i_{11/2}).$
8579.0 4	30^{+}	154 ns 14	configuration= $\pi(h_{0/2}^2 i_{13/2}^2)_{20+} \otimes \nu(p_{1/2}^{-2} g_{9/2} i_{11/2}).$
			$T_{1/2}$: from 1977Ho17, uncertainty from 1977HoZQ. Other: 151 ns (1989Lo02).
			g=0.657 3 (1977Ho17).
8932.7 5	30^{+}		configuration= $\pi(h_{9/2}^3 i_{13/2})_{17-} \otimes \nu(p_{1/2}^{-2} i_{11/2} j_{15/2}).$
9028.2 5	29,31		configuration= $\pi(h_{9/2}^{3'-i_{13/2}})_{17-} \otimes \nu(p_{1/2}^{-2}g_{9/2}j_{15/2})$ for $J^{\pi}=29^+$.
9446.5 5	31+		configuration= $\pi(h_{9/2}^{2'-i}i_{13/2}^2) \otimes \nu(p_{1/2}^{-1}f_{5/2}^{-2}g_{9/2}i_{11/2}).$
9509.3 <i>5</i>	31+		configuration= $\pi(h_{9/2}^{3}i_{13/2}) \otimes \nu(p_{1/2}^{-1}f_{5/2}^{-1}g_{9/2}j_{15/2}).$
9608.2 5	31		possible configuration = $\pi(h_{9/2}^2 i_{13/2}^2) \otimes \nu(p_{1/2}^{-2} g_{9/2} j_{15/2}).$
9695.6 4	33-	4.9 ns 7	configuration= $\pi(h_{9/2}^2;i_{13/2}^2)_{20+} \otimes \nu(p_{1/2}^{-2}i_{11/2}j_{15/2}).$ T _{1/2} : from 1990Dr07.
10102.2 5	(32)		possible configuration= $\pi(h_{9/2}^2 i_{13/2}^2) \otimes \nu(i_{13/2}^{-1} j_{15/2}).$
10124.5 6	$32^{(+)}$		possible configuration= $\pi(h_{9/2}^{2/2}i_{13/2}^{3/2}) \otimes \nu(p_{1/2}^{-1/2}f_{5/2}^{-1/2}g_{9/2}i_{11/2}).$
10619.3 5	34-	≈20 ns	configuration= $\pi(h_{9/2}^2 i_{13/2}^2) \otimes \tilde{\nu}(p_{1/2}^{-1} f_{5/2}^{-1} g_{9/2}^{-1} j_{15/2}^{-1}).$
			$T_{1/2}$: From 1990Dr07.
10843.2 5	(32)		
10961.2 5	(33)		Continued on next name (footnotes at and of table)
			Continued on next page (tootholes at end of table)

2009Dr12,2008Dr01,1988St17 (continued) $(HI,xn\gamma)$

²¹²Rn Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
11085.8 5	(34)		possible configuration = $\pi(h_{0/2}^2 i_{1/2/2}^2)_{20+} \otimes \nu(p_{1/2}^{-1} p_{2/2}^{-1} g_{9/2})_{15/2}).$
11175.1? 5	(34)		possible configuration= $\pi(h_{0/2}^{2}i_{13/2})_{17-8} \vee (f_{5/2}^{-2}i_{11/2}j_{15/2}) \text{ or } \pi(h_{0/2}^{2}i_{13/2}^{2})_{20+}$
			$\nu(f_{5/2}^{-2}g_{9/2}i_{11/2}).$
11261.8 5	35-		configuration = $\pi(h_{9/2}^2 i_{13/2}^2) \otimes \nu(p_{1/2}^{-1} f_{5/2}^{-1} i_{11/2} j_{15/2})$ or $\nu(p_{1/2}^{-1} f_{5/2}^{-1} g_{9/2} j_{15/2})$.
11354.3 5	35-	<3.5 ns	$T_{1/2}$: from table II of 2009Dr12.
			configuration= $\pi(h_{9/2}^2 i_{13/2}^2) \otimes \nu(p_{1/2}^{-1} f_{5/2}^{-1} i_{11/2} j_{15/2})$ or $\nu(p_{1/2}^{-1} f_{5/2}^{-1} g_{9/2} j_{15/2})$.
11462.3 5	(35)		possible configuration= $\pi(h_{0/2}^2 i_{13/2}^{2/2}) \otimes \nu(p_{1/2}^{-1} i_{13/2}^{-1} g_{9/2} i_{11/2}^{-1}).$
11670.6 6	(36)		possible configuration= $\pi(h_{0/2}^{3/2}i_{13/2}) \otimes \nu(p_{1/2}^{-1/2}f_{5/2}g_{9/2}i_{11/2}j_{15/2}).$
11827.1 6	36		possible configuration= $\pi(h_{0/2}^{2/2}i_{13/2}^2) \otimes \nu(p_{1/2}^{-1/2}f_{5/2}g_{9/2}^2j_{15/2}).$
11880.1 5	(35)		possible configuration= $\pi(h_{9/2}^{2/2}i_{13/2}^{2/3/2}) \otimes v(p_{1/2}^{-1}f_{5/2}^{-1}j_{15/2}^{2/2/2}).$
12052.6 5	(37)		possible configuration= $\pi(h_{0/2}^{1/2}i_{13/2}^{1/2}) \otimes \nu(p_{1/2}^{1/2}i_{13/2}^{1/2}g_{9/2}j_{15/2}).$
12165.5 6	(36)		$- \frac{1}{2} \frac{1}{1} $
12211.1 5	(37-)	17.3 ns 14	$T_{1/2}$: from $\gamma\gamma(t)$ with a pulsed beam (2008Dr01,2009Dr12).
			configuration = $\pi(h_{0/2}^2 f_{7/2} i_{13/2}) \otimes \nu(p_{1/2}^{-2} f_{5/2}^{-1} g_{9/2} i_{11/2} j_{15/2}).$
12547.4 6	(38^{+})	8.3 ns 14	$T_{1/2}$: from $\gamma\gamma(t)$ with a pulsed beam (2008Dr01,2009Dr12).
			configuration= $\pi(h_{0/2}^2 i_{13/2}^2) \otimes \nu(p_{1/2}^{-2} f_{5/2}^{-1} g_{9/2} i_{11/2} j_{15/2}).$
13375.1 11	(38,39)		$\eta = 1 J = -1 J$
13444.4 6	(39,40)		

 † From least-squares fit to Ey data. ‡ As proposed by 2009Dr12, except where noted.

$\gamma(^{212}\text{Rn})$

For transition strengths from selected levels, consult tables II and III in 2009Dr12.

4

E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.	δ	α	$I_{(\gamma+ce)}$	Comments
(7.5 [#] 6)	0.62×10 ^{-4#} 33	6174.0	22+	6166.5	20+	[E2]		6.8×10 ⁵ 35	42.3 [#] 9	I _{γ} : E2 character was assumed for the calculation of I γ , based on ΔJ^{π} .
(15.5 [#] 6)	0.044 [#] 4	7878.1	27-	7862.6	26-	[M1]		153	6.8 [#] 5	I _γ : M1 character was assumed for the calculation of I _γ , based on ΔJ^{π} .
(19.5 [#])	0.0052 10	3297.5	12+	3278.0	11+	[M1]		309	1.6 [#] 3	I _γ : M1 character was assumed for the calculation of I _γ , based on ΔJ^{π} .
(21.9 [#] 6) 54.2 3	0.00031 [#] 8 0.67 8	8579.0 1693.9	30 ⁺	8557.1 1639.70	28 ⁽⁺⁾	(E2) E2		1.28×10 ⁴ 19 150 5	4.0 [#] 7	Mult.: E3 and M2 are excluded by RUL. E2 remains the only possibility. This point was discussed in email communication with first author and there is general agreement with the conclusions drawn here, and for implied positive parity of the 8557-keV level. $\alpha(L)=111 4$; $\alpha(M)=29.8 10$;
										α (N)=7.73 24; α (O)=1.55 5; α (P)=0.170 6 Mult.: from α (exp)=180 30 (1988St17). A ₂ =0.28 8 (1988St17).
(59.2 [#] 6)	0.45 [#] 5	7878.1	27-	7818.9	26-	[M1]		11.8 4	5.7 [#] 6	I _γ : M1 character was assumed for the calculation of I _γ , based on ΔJ^{π} .
(59.8 [#] 6) 67.9 <i>3</i>	0.16 [#] 3 0.87 11	3357.3 4134.3	14 ⁺ 16 ⁻	3297.5 4066.4	12 ⁺ 17 ⁻	(E2) (M1+E2)	0.45 +22-28	93 <i>5</i> 15.1 <i>61</i>	15.5 [#] 23	Mult.: from $\alpha(\exp)=50 \ 40 \ (1988St17)$. $\alpha(L)=11.3 \ 45; \ \alpha(M)=2.9 \ 13;$ $\alpha(N)=0.75 \ 32; \ \alpha(O)=0.156 \ 63;$ $\alpha(P)=0.0196 \ 65$ Mult.: from $\alpha(\exp)=15 \ 6 \ (1988St17)$. δ : calculated by the evaluators from the measured $\alpha(\exp)$ with BrIccMixing.
(69.8 [#] 6)	0.053 [#] 8	5426.7	(20 ⁺)	5356.9	(18 ⁺)	[E2]		44.3 20	2.4 [#] 4	I _{γ} : E2 character was assumed for the calculation of I γ , based on ΔJ^{π} .
75.7 2 (81.9 [#] 6)	2.05 <i>11</i> 0.21 [#] 3	4066.4 8579.0	17 ⁻ 30 ⁺	3990.7 8497.1	15 ⁻ 28 ⁺	[E2]		20.7 8	4.6 [#] 6	I _y : E2 character was assumed for the calculation of Iy, based on ΛJ^{π} .
(92.5 [#] 8)	0.12 [#] 3	11354.3	35-	11261.8	35-	[M1]		3.20 10	0.5 [#] 1	I _{γ} : M1 character was assumed for the calculation of I γ , based on ΔJ^{π} .

					(H	$\mathbf{I},\mathbf{xn}\gamma$)	2009Dr12,	2008Dr01,	1988St17 (continued)		
γ ⁽²¹² Rn) (continued)											
E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Mult.	δ	α	Comments		
105.8 1	8.2 3	2760.4	11-	2654.7	10+	E1+M2	0.11 3	1.41 62	α(K)=0.93 38; α(L)=0.36 18; α(M)=0.092 47; α(N)=0.024 13; α(O)=0.0052 27 α(P)=7.2×10-4 37 Mult.: from α(exp)=1.4 5 (1988St17), fits only for mixed E1+M2. δ: calculated by the evaluators from the measured α(exp) with BrIccMixing. A2=-0.23 1 (1988St17).		
118.0 3	0.23 4	10961.2	(33)	10843.2	(32)						
120.7 3 138.3 1	0.34 8 37.7 24	2881.1 1639.70	12* 6 ⁺	2760.4 1501.40	11 4 ⁺	E2		2.13	α (K)=0.316 5; α (L)=1.340 20; α (M)=0.361 6; α (N)=0.0939 14; α (O)=0.0190 3 α (P)=0.00213 3 Mult.: from α (exp)=2.18 5 (1988St17). A ₂ =0.113 5 (1988St17).		
143.7 <i>3</i>	0.51 6	4134.3	16-	3990.7	15^{-}						
158.4 3	0.17 3	12211.1	(37-)	12052.6	(37)	D			A ₂ =0.29 23. Mult.: assigned as $\Delta J=0$ transition.		
179.3 <i>3</i>	0.45 5	11354.3	35-	11175.1?	(34)	D			E_{γ} : ordering of 179-214 cascade is uncertain. A ₂ =-0.40 20.		
195.5 <i>3</i>	0.22 4	8557.1	$28^{(+)}$	8361.7	(27 ⁻)						
206.6 3	0.34 3	2967.0	(12^+)	2760.4	11-						
211.8 3	0.51 3	3278.0	Π^{+}	3066.1	10+	D			E , and wine of 170 014 accords is uncontain		
214.0 3	1.23 8	111/5.17	(34)	10901.2	(33)	D			$A_2 = -0.12$ <i>11</i> .		
226.4 1	55.3 6	2881.1	12^{+}	2654.7	10^{+}	Q [@]			$A_2=0.398\ 63,\ A_4=-0.155\ 99\ (1979Ho06).$		
227.7 <i>1</i> 231.5 <i>3</i>	75.1 <i>6</i> 1.0 <i>2</i>	1501.40 3297.5	4 ⁺ 12 ⁺	1273.70 3066.1	2 ⁺ 10 ⁺	Q [@]			$A_2=0.107 \ 5 \ (1988St17).$		
255.6 3	0.34 9	3990.7	15	3734.9	13^{-}	D			h = 0.65.22		
205.45	0.50 0	7818 0	26-	7574 A	(33) 25-	D			$A_2 = -0.0525$. $A_2 = -0.3123$		
316.3.3	0.50 0	11670.6	(36)	11354.3	35-	D			E_{α} : from level-scheme figure 2 in 2009Dr12, not given in authors' table I		
336.3 3	0.68 6	12547.4	(38^+)	12211.1	(37 ⁻)	D			$A_2 = -0.44$ 15.		
344.8 2	2.67 20	5771.5	19-	5426.7	(20^{+})				-		
353.7 2	2.63 25	8932.7	30+	8579.0	30+	D			A ₂ =0.59 <i>14</i> . Mult.: assigned as ΔJ =0 transition.		
353.8 <i>3</i>	1.0 3	7878.1	27^{-}	7524.4	25^{-}				-		
356.3 <i>3</i>	0.81 7	7177.5	24 ⁽⁺⁾	6821.2	23+	D			$A_2 = -0.53 \ 13.$		
372.3 2	1.52 17	6166.5	20^{+}	5794.2	(19 ⁺)						
382.6 2	2.15 16	7524.4	25-	7141.8	25-	D			A ₂ =0.21 9. Mult.: assigned as $\Delta J=0$ transition.		
395.0 1	36.0 9	6166.5	20+	5771.5	19-	E1		0.0181	α (K)=0.01473 21; α (L)=0.00254 4; α (M)=0.000599 9; α (N)=0.0001549 22; α (O)=3.33×10 ⁻⁵ 5 α (P)=4.66×10 ⁻⁶ 7		

From ENSDF

 $^{212}_{86} Rn_{126}$ -5

L

γ (²¹²Rn) (continued)

${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\ddagger}	E_i (level)	\mathbf{J}_i^π	$E_f = J_f^{\pi}$	Mult.	α	Comments
							A ₂ =-0.212 <i>18</i> , A ₄ =-0.007 <i>25</i> (1979Ho06), Other: A ₂ =-0.17 <i>1</i> , A ₂ =-0.07 <i>3</i> (1988St17). γ (pol)=0.33 <i>10</i> (1979Ho06).
402.5 3	0.81 14	6174.0	22^{+}	5771.5 19-			
406.6 3	1.55 6	10102.2	(32)	9695.6 33-	D		$A_2 = -0.15 \ I3.$
416.2 3	≈0.09	4151.0	15	3/34.9 13	N/1	0.045	
410.5 1	8.3 4	3297.5	12.	2881.1 12	IVI I	0.245	$\alpha(R)=0.199$ 5; $\alpha(L)=0.0555$ 5; $\alpha(M)=0.00857$ 12; $\alpha(N)=0.00218$ 5; $\alpha(O)=0.0004777$ $\alpha(P)=6.97\times10^{-5}$ 10
							Mult.: from α (K)exp=0.24 <i>3</i> , α (L)exp=0.031 <i>9</i> (1988St17). A ₂ =0.20 <i>5</i> (1988St17).
422.0 2	3.32 22	2115.9	8+	1693.9 8+	M1	0.236	$\alpha(K)=0.192 3; \alpha(L)=0.0340 5; \alpha(M)=0.00806 12; \alpha(N)=0.00210 3; \alpha(O)=0.000460 7$
							$\alpha(P)=6.72\times10^{-5}\ 10$
							Mult.: from α (K)exp=0.21 2, α (L)exp=0.035 5 (1988St17).
422.5.2	2 42 17	7141.0	25-	(700 1 22+	$\langle \mathbf{O} \rangle$		$A_2=0.20.5$ (1988St17).
432.3 2	2.45 17	/141.8	23 17-	0/09.1 23	(\mathbf{Q})		$A_2 = 0.11$ 9.
447.82	4.5 5	4362.1	20.31	4134.3 10 8570 0 30 ⁺	Л		$\Delta_{2} = -0.23.20$
472.8.3	0.76.22	11827 1	36	11354 3 35-	D		$A_2 = -0.25 \ 20.$ $A_3 = -0.38 \ 20$
476.2.1	57.0 11	3357.3	14 ⁺	2881.1 12+	E2	0.0395	$\alpha(K) = 0.0261.4; \ \alpha(L) = 0.01008.15; \ \alpha(M) = 0.00257.4; \ \alpha(N) = 0.000670.10;$
170.21	5710 11	555715	11	2001.1 12	112	0.0575	$\alpha(O)=0.0001402\ 20$
							$\alpha(P)=1.79\times10^{-5}$ 3
							Mult.: from α (K)exp<0.032 2, α (L)exp=0.009 1 (1988St17).
							$A_2=0.361\ 24,\ A_4=-0.105\ 32\ (19/9H006).$ Other: $A_2=0.18\ I\ (1988St17).$
19272	2 40 12	9261 7	(27-)	7070 1 07-	D		$\gamma(\text{pol})=0.58\ IU\ (1979\text{H006}).$
465.7 2	2.49 15	8301.7	(27)	/0/0.1 2/	D		A ₂ =0.22 11. Mult : assigned as AI=0 transition
51571	22.5.6	4582.1	17^{-}	4066 4 17-	M1	0 1381	$\alpha(K) = 0.1121 I6: \alpha(L) = 0.0198 3: \alpha(M) = 0.00469 7: \alpha(N) = 0.001222 I8: \alpha(O) = 0.000267 4$
010171		10 0211	17	100011 17		011001	$\alpha(P) = 3.91 \times 10^{-5} 6$
							Mult.: from α (K)exp<0.172 2, α (L)exp=0.059 8, α (M)exp=0.036 5 (1988St17).
							$A_2=0.430\ 51,\ A_4=0.003\ 72\ (1979Ho06).$
521 7 1	22.7.6	5112.0	10-	4500 1 17-	1.61	0 1070	$\gamma(\text{pol})=0.98\ 21\ (1979\text{Ho06}).$
531.77	22.7 6	5113.9	18	4582.1 17	MI	0.1273	$\alpha(\mathbf{K})=0.1034\ I5;\ \alpha(\mathbf{L})=0.0182\ 3;\ \alpha(\mathbf{M})=0.00432\ 6;\ \alpha(\mathbf{N})=0.001125\ I6;\ \alpha(\mathbf{O})=0.000246\ 4$
							$\alpha(P)=3.00\times 10^{-4}$ J Mult : from $\alpha(K)$ evn=0 153 10 $\alpha(L)$ evn=0 042 5 (1988St17)
							A ₂ = -0.33557 A ₄ = -0.01881 (1979Ho06)
							$\gamma(\text{nol}) = -0.43 \ 16 \ (1979\text{Ho06})$
535.0 1	5.7 3	6709.1	23^{+}	6174.0 22+	D		$A_2 = -0.50 6.$
537.1 <i>I</i>	7.2 4	3297.5	12^{+}	2760.4 11-	D		$A_2 = -0.21 \ 13 \ (1988St17).$
615.2 3	0.81 10	10124.5	$32^{(+)}$	9509.3 31+	D		$A_2 = -0.47 \ 18.$
619.0 <i>I</i>	4.32 25	8497.1	28^{+}	7878.1 27-	D		$A_2 = -0.11$ 7.
623.3 2	1.91 25	3278.0	11^{+}	2654.7 10+			
628.9 <i>3</i>	≈0.2	3510.0	(13^{+})	2881.1 12+			

6

From ENSDF

						(H	I,xnγ)	2009Dr12	2,2008Dr01,1988St17 (continued)
								γ ⁽²¹²	Rn) (continued)
	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.	α	Comments
	633.4 1	60.7 17	3990.7	15-	3357.3	14+	E1	0.00687	$\alpha(K)=0.00566\ 8;\ \alpha(L)=0.000929\ 13;\ \alpha(M)=0.000218\ 3;\ \alpha(N)=5.64\times10^{-5}\ 8;\ \alpha(O)=1.223\times10^{-5}\ 18\ \alpha(P)=1.742\times10^{-6}\ 25\ A_2=-0.184\ 29,\ A_4=0.004\ 43\ (1979Ho06),\ Other:\ A_2=-0.15\ 2\ (1988St17).$
	640.5 <i>3</i> 642.7 <i>3</i> 644.5 <i>3</i>	1.41 22 1.50 <i>13</i> 0.31 6	3997.8 11261.8 2760.4	(14 ⁻) 35 ⁻ 11 ⁻	3357.3 10619.3 2115.9	14 ⁺ 34 ⁻ 8 ⁺	D		$A_2 = -0.71 \ 14.$
	647.2 2 657.6 <i>1</i>	2.04 <i>16</i> 42.9 <i>10</i>	6821.2 5771.5	23 ⁺ 19 ⁻	6174.0 5113.9	22+ 18 ⁻	M1	0.0726	A ₂ =0.80 <i>10</i> . α (K)=0.0590 <i>9</i> ; α (L)=0.01035 <i>15</i> ; α (M)=0.00245 <i>4</i> ; α (N)=0.000638 <i>9</i> ; α (O)=0.0001396 <i>20</i>
									α (P)=2.04×10 ⁻⁵ 3 Mult.: from α (K)exp=0.050 3, α (L)exp=0.018 2, α (M)exp=0.006 2 (1988St17). A ₂ =-0.213 49, A ₄ =0.008 73 (1979Ho06). γ (pol)=-0.39 12 (1979Ho06).
	677.1 <i>1</i>	7.2 5	7818.9	26-	7141.8	25^{-}	D		$A_2 = -0.56$ 7.
	679.0 <i>1</i>	5.9 5	8557.1	$28^{(+)}$	7878.1	27^{-}	D		$A_2 = -0.17 \ 6.$
1	698.1 <i>3</i> 700.9 <i>1</i>	1.57 <i>19</i> 32.2 <i>10</i>	12052.6 8579.0	(37) 30 ⁺	11354.3 7878.1	35 ⁻ 27 ⁻	Q E3	0.0463	A ₂ =0.25 <i>16</i> . $\alpha(K)$ =0.0286 <i>4</i> ; $\alpha(L)$ =0.01316 <i>19</i> ; $\alpha(M)$ =0.00341 <i>5</i> ; $\alpha(N)$ =0.000891 <i>13</i> ; $\alpha(O)$ =0.000187 <i>3</i> $\alpha(P)$ =2.42×10 ⁻⁵ <i>4</i>
									$A_2=0.632\ 51,\ A_4=0.044\ 65\ (1979Ho06).$ Other: $A_2=0.10\ 4\ (2009Dr12).$
	709.1 <i>1</i>	8.9 4	4066.4	17-	3357.3	14+	E3	0.0449	$\alpha(K)=0.0279$ 4; $\alpha(L)=0.01263$ 18; $\alpha(M)=0.00327$ 5; $\alpha(N)=0.000855$ 12; $\alpha(O)=0.000180$ 3
									α (P)=2.33×10 ⁻⁵ 4 Mult.: from α (K)exp=0.028 5, α (L)exp=0.021 3 (1988St17). A ₂ =0.664 52, A ₄ =0.003 68 (1979Ho06). γ (pol)=0.76 29 (1979Ho06).
	720.8 1	8.9 4	7862.6	26-	7141.8	25-	D		$A_2 = -0.38 6.$
	736.3 <i>1</i>	3.47 20 32.2 12	7878.1	35 27 ⁻	7141.8	34 25 ⁻	D E2	0.01495	A ₂ =-0.62 <i>I</i> 3. $\alpha(K)=0.01117 I6; \alpha(L)=0.00285 4; \alpha(M)=0.000704 I0; \alpha(N)=0.000183 3;$ $\alpha(O)=3.91\times10^{-5} 6$ $\alpha(P)=5.27\times10^{-6} 8$ A ₂ =0 323 42 A ₄ =-0.098 57 (1979Ho06) Other: A ₂ =0.09 4 (2009Dr12)
									γ (pol)=0.40 27 (1979Ho06).
	739.7 <i>1</i> 747.3 <i>1</i>	3.54 25 5.5 <i>3</i>	6166.5 6174.0	20 ⁺ 22 ⁺	5426.7 5426.7	(20 ⁺) (20 ⁺)			
	774.8 3	1.21 22	5356.9	(18^+)	4582.1	17-			
	79373	1.49.25	4929.2 4151.0	(10) 15^{-}	4131.0 3357 3	13 14 ⁺			
	804.8 ^{&} 843.0 <i>3</i>	0.37 5	2306.2? 11462.3	(6 ⁺) (35)	1501.40 10619.3	4+ 34 ⁻			E_{γ} : from 1988St17, not seen in 2009Dr12.

7

L

γ (²¹²Rn) (continued)

E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^π	$E_f \qquad J_f^{\pi}$	Mult.	δ	α	Comments
844.5 2 856.7 2 859 <i>1</i> 862.8 <i>3</i>	2.2 <i>4</i> 4.4 <i>3</i> 0.44 <i>16</i> 1.04 <i>8</i>	5426.7 12211.1 10961.2 4929.2	$(20^+) (37^-) (33) (16^-)$	4582.1 17 11354.3 35 10102.2 (32) 4066.4 17	Q			A ₂ =0.33 18.
865.0 2 867.5 2 923.7 1 930.3 2 938.3 3 949.5 3	2.39 8 2.11 23 8.21 25 3.93 16 1.35 20 0.99 25	5794.2 9446.5 10619.3 9509.3 4929.2 12211.1	(19^+) 31^+ 34^- 31^+ (16^-) (37^-)	4929.2 (16 8579.0 30 ⁺ 9695.6 33 ⁻ 8579.0 30 ⁺ 3990.7 15 ⁻ 11261.8 35 ⁻	-) D D			$A_2 = -1.3 2.$ $A_2 = -0.73 6.$ $A_2 = -0.83 6.$
950.3 2 960.8 1	2.36 25 83.9 18	3066.1 2654.7	10 ⁺ 10 ⁺	2115.9 8 ⁺ 1693.9 8 ⁺	E2		0.00878	$\begin{aligned} &\alpha(\text{K}) = 0.00683 \ 10; \ \alpha(\text{L}) = 0.001476 \ 21; \ \alpha(\text{M}) = 0.000359 \ 5; \\ &\alpha(\text{N}) = 9.33 \times 10^{-5} \ 13; \ \alpha(\text{O}) = 2.00 \times 10^{-5} \ 3 \\ &\alpha(\text{P}) = 2.78 \times 10^{-6} \ 4 \\ &\text{Mult.: from } \alpha(\text{K}) \text{exp} = 0.007 \ 1, \ \alpha(\text{L}) \text{exp} = 0.0016 \ 2, \ \alpha(\text{M}) \text{exp} = 0.0009 \ 1 \\ &(1988\text{St17}). \\ &\text{A}_2 = 0.349 \ 15, \ \text{A}_4 = -0.105 \ 22 \ (1979\text{Ho06}). \text{ Other: } \text{A}_2 = 0.20 \ 1 \ (1988\text{St17}). \end{aligned}$
967.8 <i>1</i>	49.6 10	7141.8	25-	6174.0 22+	E3		0.0209	$\gamma(\text{pol})=0.62 \ II.$ $\alpha(\text{K})=0.01473 \ 2I; \ \alpha(\text{L})=0.00460 \ 7; \ \alpha(\text{M})=0.001158 \ I7;$ $\alpha(\text{N})=0.000302 \ 5; \ \alpha(\text{O})=6.44\times10^{-5} \ 9$ $\alpha(\text{P})=8.66\times10^{-6} \ I3$ $A_2=0.574 \ 23, \ A_4=0.025 \ 32 \ (1979\text{Ho06}), \ \text{Other:} \ A_2=0.19 \ 3 \ (2009\text{Dr}12).$ $\gamma(\text{pol})=0.79 \ I9 \ (1979\text{Ho06}).$
974.4 <i>3</i>	1.01 20	3734.9	13-	2760.4 11-				
979.6 3	1.83 22	5113.9	18-	4134.3 16				
1002.1 3	0.8/1/ 2.01.16	2696.0	(8)	1693.9 8	D			$\Delta_{2} = 0.40.11$
1029.2 2 1047.4 <i>I</i>	12.9110 12.910	5113.9	18 ⁻	4066.4 17 ⁻	M1+E2	1.4 2	0.0122 11	
1066.4 3	0.70 8	2760.4	11-	1693.9 8+				
1116.6 <i>1</i>	17.9 6	9695.6	33-	8579.0 30+	E3		0.01508	$\alpha(K)=0.01105 \ 16; \ \alpha(L)=0.00303 \ 5; \ \alpha(M)=0.000755 \ 11;$ $\alpha(N)=0.000197 \ 3; \ \alpha(O)=4.21\times10^{-5} \ 6$ $\alpha(P)=5.75\times10^{-6} \ 8$ Mult.: from $\alpha(K)\exp=0.0102 \ 5, \ K/L=3.9 \ 5, \ and \ \gamma(\theta) \ (1990Dr07).$ $A_2=0.47 \ 6.$
1164 <i>1</i>	0.35 9	13375.1	(38,39)	12211.1 (37	_)			-
1212.3 3	0.48 9	5794.2	(19 ⁺)	4582.1 17-				
1233.3 3	0.85 20	13444.4	(39,40)	12211.1 (37	_)			A 0.04.27
1260.8 3	1.07 16	11880.1	(33)	10619.3 34				$A_2 = -0.04 \ 3/.$

 ∞

н

γ (²¹²Rn) (continued)

E_{γ}^{\dagger}	I_{γ} ‡	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult.	α	Comments
1273.7 1	100.0 23	1273.70	2+	0.0 0+	E2	0.00515	$\alpha(K)=0.00411 \ 6; \ \alpha(L)=0.000786 \ 11; \ \alpha(M)=0.000188 \ 3; \ \alpha(N)=4.90\times10^{-5} \ 7; \\ \alpha(O)=1.060\times10^{-5} \ 15 \\ \alpha(P)=1.501\times10^{-6} \ 21 \\ \text{Mult.: from } \alpha(K)\exp=0.0043 \ 5, \ \alpha(L)\exp=0.0008 \ 1, \ \alpha(M)\exp=0.00024 \ 6 \ (1988St17). \\ \text{A}_2=0.18 \ 1 \ (1988St17).$
1290.5 <i>3</i>	1.74 25	5356.9	(18^{+})	4066.4 17-			
1334.0 <i>3</i>	1.33 14	10843.2	(32)	9509.3 31+	D		$A_2 = -0.14 \ I4.$
1355.4 3	1.32 13	8497.1	28+	7141.8 25-	0	0.00992	$\begin{aligned} &\alpha(K) = 0.00753 \ 11; \ \alpha(L) = 0.00179 \ 3; \ \alpha(M) = 0.000441 \ 7; \ \alpha(N) = 0.0001150 \ 17; \\ &\alpha(O) = 2.47 \times 10^{-5} \ 4 \\ &\alpha(P) = 3.44 \times 10^{-6} \ 5 \\ &A_2 = 0.34 \ 19. \end{aligned}$
1360.3 <i>1</i>	12.4 8	5426.7	(20^{+})	4066.4 17-	(0)		$A_2=0.45 \ 6 \ (1988St17).$
1390.2 <i>3</i>	0.40 10	11085.8	(34)	9695.6 33-			
1658.4 <i>3</i>	0.79 14	11354.3	35-	9695.6 33-			
1705.1 <i>3</i>	0.37 6	5771.5	19-	4066.4 17-			

[†] Energy uncertainty stated by the authors in the email reply to B. Singh on March 30, 2008: 0.1 keV for the most intense transitions to 0.3 keV for weak transitions and 1 keV when energy is stated to nearest keV. B. Singh assigned 0.1 keV for $I\gamma>5$, 0.2 keV for $I\gamma=2-5$ and 0.3 keV for $I\gamma<2$ and evaluators retain these assignments.

^{\ddagger} Intensities listed in 2009Dr12 have been divided here by a factor of 10, so that values are relative to 100 for 1273.7 γ .

[#] γ not seen in 2009Dr12, but implied by $\gamma\gamma$ data. E γ is deduced by the evaluator from the level-energy difference, and the I(γ +ce) is from 2009Dr12. The I γ is deduced by the evaluator from the transition intensity and total conversion coefficient.

[@] α (L)exp(226.4 γ +227.7 γ)=0.19 4, α (M)exp(226.4 γ +227.7 γ)=0.067 8 (1988St17).

[&] Placement of transition in the level scheme is uncertain.

²¹²₈₆Rn₁₂₆

 $^{212}_{86} Rn_{126}$

 $^{212}_{\ 86} Rn_{126}$