		Type		Auth	His	tory Citation	2	Literature Cutoff Date
	F	ull Evaluation	ΚΔ	uranen and E	A Meeutcha	n NDS 168 117	$\frac{1}{(2020)}$	
	Г		к. А		2. A. Mecutena	II NDS 108, 117	(2020)	1-Aug-2020
$Q(\beta^{-}) = -1741.$ S(2n)=10558.9 α : Additional	3 21; S(98 17, S(informat	n)=6008.2 5; S((2p)=10218.9 9 ion 1.	(p)=57 (2017	$799 5; Q(\alpha) = 8$ Wa10).	8954.20 <i>11</i>	2017Wa10		
					²¹² Po	Levels		
				(Cross Referenc	e (XREF) Flags		
		A 212 B 212 C 212 D 216	Bi β^- Bi β^- Bi β^- Rn α	decay (60.55 decay (25.0 decay (7.0 n decay	5 min) E min) F nin) G H	208 Pb(7 Li,t γ) 208 Pb(9 Be, α n γ) 208 Pb(18 O, 14 C γ) 209 Bi(α ,p γ)	I 2: J 20 K 20 L 20	10 Pb(α ,2n γ) 08 Pb(16 O, 12 C) 08 Pb(12 C, 8 Be γ) 09 Bi(α ,p)
E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} ‡		XREF			Comm	nents
0.0	0+@	294.3 ns 8	AB	DEFGHI JKL	$%\alpha$ =100 T _{1/2} : weight 294.7 ns 1 uncertainti A third rec (2014Be39 295.2 ns <i>I</i> ns 30 (201 296 ns 2 (ns 4 (1949) and 1948H	ed average of 293. 6 (stat) 8 (syst) (20 es combined in qu cent study reports a 9), if this value is i 3. Others: 350 ns (2Be14), 290 ns +4 1975Sa06), 304 ns (Bu09). See also 19 fi21.	9 ns 10 (013Be31) adrature p a half life ncluded, 60 (2018 40-30 (20 8 (1972) 962F103,	stat) 6 (syst) (2017Ap03) and), with systematic and statistical prior to taking the weighted average. e of 298.8 ns 8 (stat) 14 (syst) the weighted average becomes Sa45), 302 ns 27 (2018So16), 260 003Da24), 309 ns 11 (1981Bo29), Mc29), 305 ns 5 (1963As02), 304 1957Ec08, 1953Ha09, 1949Va01,
121.550 9	Σ	14.2 ps 18	AB	EFGHIJK	%11=99.967 J^{π} : E2 727.3' $\%\alpha$: from I α 1970GrYC $T_{1/2}$: from R	; $\% a^2 = 0.033$ γ to 0 ⁺ . (from 727 level)/Ia 0,1965Le08). RDDS in ²⁰⁸ Pb(¹² C)	r(from g. . ⁸ Bey) (2	s.)=34×10 ⁻⁶ (1979Ry03, based on 2017Ko38).
1132.51 10	4 ⁺ @		В	EFGHI K	%IT≈95.5; % J ^π : E2 405.2 %α: from ²⁰⁸ branching	$\delta \alpha \approx 0.5$ γ to 2 ⁺ level. ⁸ Pb(¹⁸ O, ¹⁴ Cγ) (20) in ²¹² Bi β ⁻ α decay	10As03)	Other: $\%\alpha \approx 27$ from I α and pin) (1978Ba44 1984Es01)
1249 ^{#} 10			В		%α=100		y (20.0 II	ini) (1970Burr,1901E801).
1355.49 <i>14</i>	6 ⁺ @	0.76 ns 21	В	EFGHI KL	%α: from ²¹² %IT≈97 <i>1</i> ; % J ^π : E2 223.0 T _{1/2} : from γ %α: from ²⁰³ branching	² Bi β^- decay (25.0 $\delta \alpha \approx 3 I$ γ to 4 ⁺ level, $\gamma(\theta)$ (t) in ²⁰⁸ Pb(⁹ Be, αn ⁸ Pb(¹⁸ O, ¹⁴ C γ) (20) in ²¹² Bi $\beta^- \alpha$ decay) min) (19 (²⁰⁸ Pb(⁹) ny) (1987 10As03). y (25.0 m	980Le27). Be,αnγ)). 7Po14). Other: %α≈71 from Iα and hin) (1978Ba44,1984Es01).
1476.39 <i>17</i>	8+ [@]	14.6 ns <i>3</i>	В	FGHI KL	%IT \approx 97 <i>1</i> ; % XREF: H(14 J ^{π} : E2 120.9 T _{1/2} : weighten ns 24 (197 % α : from ²⁰⁸ 1984Es01; ²⁰⁹ Bi(α ,py	$\%\alpha \approx 3 \ I$ 23). γ to 6 ⁺ level. ed average of 14 n (8Li14). Others: 17 ⁸ Pb(¹⁸ O, ¹⁴ C γ) (20 see ²¹² Po α -decay (1978Li14).	s 1 (2010 7.1 ns 2 ² 10As03). 7 (17.1 ns	DAs03), 14.7 ns 3 (1981Bo29), 14.2 108 Pb(9 Be, α n γ) (1987Po14). Others: $\%\alpha$ \approx 42 from 1978Ba44, s) data set, $\%\alpha$ =6 1 from
1512.70 8	2+	0.49 ps 6	A	K	J ^π : M1+E2 γ	γ to 2 ⁺ level, $\gamma\gamma(\theta)$) (²¹² Bi <i>f</i>	3 ⁻ decay (60.55 min)).

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

²¹²Po Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} ‡		XREF	Comments
					$T_{1/2}$: from DSAM in ²⁰⁸ Pb(¹² C, ⁸ Be γ) (2016Ko03).
1536.85 10	3			FG K	J^{π} : D 809.5 γ to 2 ⁺ level.
1547 [#] 10			В		%α=100
					%α: from ²¹² Bi $β^- α$ decay (25.0 min) (1980Le27).
1578 [#] 10			В		%α=100
					%α: from ²¹² Bi $β^- α$ decay (25.0 min) (1980Le27).
1612 [#] 10			В		%α=100
					%α: from ²¹² Bi $β^- α$ decay (25.0 min) (1980Le27).
1620.739 10	1^{+}		A		J ^{π} : M1+E2 γ to 2 ⁺ level, (M1) γ to 0 ⁺ level, $\gamma\gamma(\theta)$.
1657 [#] 10			В		%α=100
					% α : from ²¹² Bi $\beta^{-}\alpha$ decay (25.0 min) (1980Le27).
1679.452 14	2^{+}	0.54 ps 6	A	K	%IT=99.7; %α=0.3
					J^{π} : $\gamma\gamma(\theta)$, M1+E2 γ to 2 ⁺ level (²¹² Bi β^- decay (60.55 min)).
					% α : from I α (from 1679.3 level)/I α (from g.s.)=1×10 ⁻⁵ (1979Ry03, based
					on 1970GrYO,1965Le08).
1744.0.5	(A=)	0.22 10		C W	$T_{1/2}$: from DSAM in ²⁰⁶ Pb(¹² C, ⁸ Be γ).
1744.9 5	(4)	0.33 ps 10	D	GK	$J^{+}: \Delta J = 0$ (E1) 612.3 γ to 4 ⁺ level.
1752.80 19	(0)	0.55 ps 14	Б	IG I K	$I^{\pi} \cdot \Lambda I = 0$ (E1) 276 5 γ to 8 ⁺ level
1788.07 17	(6^{-})	0.31 ps 6		FG K	J^{π} : $\Delta J=0$ (E1) 273.67 to 6 ⁺ level.
1800.91 19	0 ⁺	1	Α		%IT \geq 74; % $\alpha \leq$ 26
					J^{π} : E0 transition to 0 ⁺ g.s.
					$\%\alpha$: from I α (from 1801 level)/I α (from g.s.)=1.6×10 ⁻⁴ (1979Ry03, based
					on 1970GrYO,1965Le08). A single α group is measured which likely
1905 05 10	2+				corresponds to the 1801-keV and 1806-keV levels.
1805.95 10	2		A		$\%11 \ge 98.4$; $\%\alpha \le 1.0$ $\pi_{1.2} \exp(0)$ M1 $\pm E2$ or to 2^{+} level $(2^{12}\text{D}; e^{-} \text{ decay} (60.55 \text{ min}))$
					J. $\gamma \gamma(0)$, M1+E2 γ to 2 level (B) β decay (00.55 mm)).
					on 1970GrYO 1965Le08). A single α group is measured which likely
					corresponds to the 1801-keV and 1806-keV levels.
1833.89 19	10 ⁺ @	0.55 ns 14		FGIK	J^{π} : E2 357.5 γ to 8 ⁺ level.
					$T_{1/2}$: from ²⁰⁸ Pb(⁹ Be, $\alpha n\gamma$) (1987Po14).
1945.83 <i>14</i>	(4)	0.33 ps 10		FG	$J^{\pi}: \Delta J=0$ (D) 813.3 γ to 4 ⁺ level.
1987.59 <i>19</i>	(8)			FG K	J^{π} : $\Delta J=0$ (D) 234.6 γ to (8 ⁻).
2002.6 3	$4^{(-)}$			G K	J^{π} : $\Delta J=0$ D 465.7 γ to 4 ⁻ level.
2016.99 17	(6)	0.333 ps 28		FG K	J^{π} : $\Delta J=0 D 661.5\gamma$ to 6 ⁺ level.
					J^{n} : from DSAM in ²⁰⁸ Pb(¹² C, ^o Be γ). Other: 0.34 ps 11
2005 6 5				C	$200 \text{Pb}(100, 14 \text{C}\gamma).$
2085.0 5	5			G FG	I^{π} . D 968 9v to A^+ level
2103.45 23	5			GK	J^{π} : D 970.19 to 4 ⁺ level, stretched O 566.39 to 3 level.
2170.1 5				G	
2228.69 17	7			FG K	J^{π} : D 873.2 γ to 6 ⁺ level.
2237.3 4				G	
2281.7 4				G	
2295.3 3	0			G	I^{π} , D 860 200 to 8 ⁺ lovel
2363 4 4	9 (6)			G	J^{π} · $\Lambda I=0$ D 575 6 γ to (6 ⁻) level
2375.6 3	7			GK	J^{π} : D γ' 's to 6 ⁺ and (8 ⁺).
2411.26 22	(11^{-})			FG I	J^{π} : $\gamma(\theta)$ rules out $\Delta J=2$ Q transition to 10 ⁺ level (²⁰⁸ Pb(⁹ Be, \alpha n \gamma));
	. /				analogy with ²¹⁴ Rn suggests 11 ⁻ .
2421.7 5				G	
2433.8 5				G	
2467.2 20	10	0.42 ps 11		G	J ^{$*$} : Δ J=0 D 633.3 γ to 10 ^{$+$} .

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

²¹²Po Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}$ ‡	XREF	Comments
2471.44 21	(9 ⁻)		FG	J^{π} : D 718.7 γ to (8 ⁻) level.
2526.9 10			G	
2583.26 24	_		FG	
2604.5 6	5		G	J^{n} : D 601.9 γ to 4 ⁽⁻⁾ .
2005.8 4	5	<0.07 m	G	π , AL-0 D 562 Pri to 5 ⁽⁻⁾ level
2007.3 20	(12^+)	≤0.97 ps	G FC T	J^{**} : $\Delta J = 0$ D 505.8 γ 10 5 γ level. I^{π} : (E2) 868 3 α to 10 ⁺ level
2702.23 22	(12^{-})		FGI	I^{π} : E1 69 2 γ to (12 ⁺) E1 133 3 γ from (14 ⁺)
2782.2 4	(10)		G	
2838.9 10		≤0.97 ps	G	
2860.7 20		≤0.97 ps	G	
2863.5 5			G	
2865.8 20	7	≤0.38 ps	G	J^{π} : $\Delta J=0$ D 490.2 γ to 7 ⁽⁻⁾ level.
2869.1 20		≤0.97 ps	G	
28//.00			G	
2882 9 20		<0.38 ps	G	
2885.4 3	(14^{+})	<u>30.50 ps</u>	FGI	J^{π} : E2 182.6 γ to (12 ⁺).
2930 10	(18+)	45.1 s 6	C L	%IT=0.07 2; %α=99.93 2
				Configuration= $((\pi h_{9/2})^{+2}(\nu g_{9/2})(\nu h_{11/2}))$
				E(level): from Q(α)(²¹² Po 45.1 s level)-Q(α)(²¹² Po g.s.), taking E α to g.s.
				from 1976FrZO.
				J^{π} : shell model suggest 16 ⁺ or 18 ⁺ for this isomer. From RUL the
				unobserved isomeric transition to (14') level is not of E2 multipolarity. Therefore, $I_{\mu} \neq 16^{+}$ For further discussion and 1080Ku08, 1087De14
				Therefore, $J \neq 10^\circ$. For further discussion see 1989Ku08, 1987P014. The from the decay of 8.53-9.08- and 11.65-MeV α 's (1962Pe15). Other
				47 s 10 (1962Ka15).
				$\%\alpha$,%IT: from I α (8.784 MeV)/I α (11.65 MeV) (1989Ku08) (see α decay
				data set).
				Production: ²⁰⁹ Bi(α ,p) (1989Ku08); daughter ²¹² Bi β^- decay (7.0 min).
2942.1 21			G	
2975.5 20		≤0.97 ps	G	
3006.6 5		< 0.07 ps	G	
3012.4 20		$\leq 0.97 \text{ ps}$	G	
3037.4 6		<u>20.97 ps</u>	G	
3112.9 5			G	
3156.0 20	7	0.08 ps 4	G	J^{π} : $\Delta J=0$ D 780.4 γ to 7 ⁽⁻⁾ level.
3176.8 6		-	G	
3195.0 5			G	
3204.9 20		≤0.97 ps	G	
3211.6 20		≤0.97/ ps	G	

[†] From a least squares fit to $E\gamma$, by evaluators, except where noted. [‡] From the ²⁰⁸Pb(¹⁸O, ¹⁴C γ) dataset, except where noted. [#] From $\Delta Q(\alpha)$, weak β delayed α observed in 25.0 min ²¹²Bi β - α decay (1980Le27). [@] Configuration=((π h_{9/2})⁺²(ν g_{9/2})⁺²) with leading component configuration=((π h_{9/2})⁺²(ν g_{9/2})⁺²) (1987Po14).

						Adop	ted Levels, G	ammas (contin	nued)
							$\gamma(^{21}$	² Po)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_{f}	\mathbf{J}_f^{π}	Mult. [†]	δ^{\dagger}	α	Comments
727.330	2+	727.330 9	100	0.0	0+	E2		0.01393	$\alpha(K)=0.01054 \ 15; \ \alpha(L)=0.00257 \ 4; \ \alpha(M)=0.000628 \ 9; \\ \alpha(N)=0.0001613 \ 23; \ \alpha(O)=3.28\times10^{-5} \ 5 \\ \alpha(P)=3.83\times10^{-6} \ 6 \\ B(E2)(W.u.)=2.57 \ +38-29 \\ Mult.: also from \ ^{208}Pb(^{9}Be.\alphanv) \ data.$
1132.51	4+	405.2 [#] 1	100 [#]	727.330	2+	E2 [#]		0.0543	$\alpha(K)=0.0345 \ 5; \ \alpha(L)=0.01485 \ 21; \ \alpha(M)=0.00379 \ 6; \\ \alpha(N)=0.000972 \ 14; \ \alpha(O)=0.000192 \ 3 \\ \alpha(P)=2.03\times10^{-5} \ 3$
1355.49	6+	223.0 [#] 1	100 [#]	1132.51	4+	E2 [#]		0.324	α (K)=0.1310 <i>19</i> ; α (L)=0.1435 <i>21</i> ; α (M)=0.0378 <i>6</i> ; α (N)=0.00969 <i>14</i> ; α (O)=0.00187 <i>3</i> α (P)=0.000179 <i>3</i> B(E2)(W.u.)=13.2 +49-29
1476.39	8+	120.9 [#] 1	100 [#]	1355.49	6+	E2 [#]		3.25	α (K)=0.408 6; α (L)=2.10 3; α (M)=0.561 9; α (N)=0.1439 21; α (O)=0.0274 4; α (P)=0.00248 4 P(F2)(Wu) = 4.56 12
1512.70	2+	785.37 8	100 <i>I</i>	727.330	2+	M1+E2	+0.09 3	0.0387	$\begin{aligned} \alpha(K) &= 0.0316 \ 5; \ \alpha(L) &= 0.00539 \ 8; \ \alpha(M) &= 0.001266 \ 19; \\ \alpha(N) &= 0.000326 \ 5; \ \alpha(O) &= 6.82 \times 10^{-5} \ 10 \\ \alpha(P) &= 8.84 \times 10^{-6} \ 13 \\ P(M1)(W_H) &= 0.071 + 10 \ 8; \ P(E2)(W_H) &= 0.22 + 26 \ 18 \end{aligned}$
		1512.7 3	26 3	0.0	0+	[E2]		0.00344	$\begin{aligned} &\alpha(\mathbf{K}) = 0.00274 \ 4; \ \alpha(\mathbf{L}) = 0.000483 \ 7; \ \alpha(\mathbf{M}) = 0.0001139 \ 16; \\ &\alpha(\mathbf{N}) = 2.93 \times 10^{-5} \ 4; \ \alpha(\mathbf{O}) = 6.07 \times 10^{-6} \ 9 \\ &\alpha(\mathbf{P}) = 7.66 \times 10^{-7} \ 11 \\ &\mathbf{B}(\mathbf{E}2)(\mathbf{W}.\mathbf{u}.) = 0.39 \ 6 \end{aligned}$
1536.85	3	405 [‡] 1	8 [‡] 4	1132.51	4+				
		809.5 [#] 1	100 [‡] <i>13</i>	727.330	2^{+}	D^{\ddagger}			
1620.739	1+	893.408 5	25.8 13	727.330	2+	M1+E2	-0.031 34	0.0278	$\alpha(K)=0.0228 \ 4; \ \alpha(L)=0.00386 \ 6; \ \alpha(M)=0.000907 \ 13; \ \alpha(N)=0.000233 \ 4; \ \alpha(O)=4.89\times10^{-5} \ 7 \ \alpha(P)=6 \ 33\times10^{-6} \ 9$
		1620.50 <i>10</i>	100.0 22	0.0	0+	(M1)		0.00620	$\alpha(\mathbf{K}) = 0.00494 \ 7; \ \alpha(\mathbf{L}) = 0.000824 \ 12; \ \alpha(\mathbf{M}) = 0.000193 \ 3; \alpha(\mathbf{N}) = 4.97 \times 10^{-5} \ 7; \ \alpha(\mathbf{O}) = 1.041 \times 10^{-5} \ 15$
1679.452	2+	952.120 <i>11</i>	100 <i>19</i>	727.330	2+	M1+E2	+0.65 50	0.019 5	$\alpha(P)=1.353 \times 10^{-6} I^{9}$ $\alpha(K)=0.015 4; \ \alpha(L)=0.0027 6; \ \alpha(M)=0.00063 I^{3}; \ \alpha(N)=0.00016$ $4; \ \alpha(O)=3.4 \times 10^{-5} 7$ $\alpha(P)=4.4 \times 10^{-6} I^{0}$ $P(M1)(W_{12}) = 0.024 + 8 - 10 \cdot P(E2)(W_{12}) = 2.0 + 37 - 20$
		1679.7 5	35 8	0.0	0+	[E2]		0.00291	$\begin{aligned} \alpha(\mathbf{K}) = 0.00227 \ 4; \ \alpha(\mathbf{L}) = 0.000391 \ 6; \ \alpha(\mathbf{M}) = 9.19 \times 10^{-5} \ 13; \\ \alpha(\mathbf{N}) = 2.36 \times 10^{-5} \ 4; \ \alpha(\mathbf{O}) = 4.91 \times 10^{-6} \ 7 \\ \alpha(\mathbf{P}) = 6.23 \times 10^{-7} \ 9 \\ \mathbf{B}(\mathbf{E}2)(\mathbf{W}, \mathbf{u}, \mathbf{u}) = 0.27 \ 7 \end{aligned}$
1744.9	(4 ⁻)	612.3 [‡] 20	100 [‡]	1132.51	4+	(E1) [‡]		0.00682 11	$\alpha(K)=0.00563 \ 9; \ \alpha(L)=0.000908 \ 15; \ \alpha(M)=0.000212 \ 4;$

4

From ENSDF

L

						Ado	pted Levels, C	Gammas (co	ntinued)	
							γ ⁽²¹² Po)	(continued)		
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_{f}	\mathbf{J}_f^{π}	Mult. [†]	δ^{\dagger}	α	$I_{(\gamma+ce)}$	Comments
					<u></u>					$\alpha(N)=5.42\times10^{-5} \ 9; \ \alpha(O)=1.122\times10^{-5} \ 18$ $\alpha(P)=1.407\times10^{-6} \ 22$ B(E1)(W.u.)=0.0025 +11-6
1752.86	(8 ⁻)	276.5 [#] 1	100 [#]	1476.39	8+	(E1) [‡]		0.0379		α (K)=0.0308 5; α (L)=0.00539 8; α (M)=0.001268 18; α (N)=0.000324 5; α (O)=6.60×10 ⁻⁵ 10 α (P)=7.94×10 ⁻⁶ 12 B(E1)(W.u.)=0.026 +18-8
1788.07	(6 ⁻)	432.6 [#] 1	100 [#]	1355.49	6+	(E1) [‡]		0.01392		α (K)=0.01143 <i>16</i> ; α (L)=0.00190 <i>3</i> ; α (M)=0.000446 <i>7</i> ; α (N)=0.0001140 <i>16</i> ; α (O)=2.35×10 ⁻⁵ <i>4</i> α (P)=2.90×10 ⁻⁶ <i>4</i> B(E1)(W µ)=0.0075 + <i>17</i> - <i>12</i>
1800.91	0^{+}	180.2	20 8	1620.739	1+	[M1]		2.08		$\alpha(\mathbf{K})=1.692\ 24;\ \alpha(\mathbf{L})=0.298\ 5;\ \alpha(\mathbf{M})=0.0704\ 10;\ \alpha(\mathbf{N})=0.0181\ 3;\ \alpha(\mathbf{O})=0.00379\ 6$
		1073.6 2	100 12	727.330	2+	[E2]		0.00642		$\alpha(K) = 0.005490^{-7} \alpha(K) = 0.001002 \ 14; \ \alpha(M) = 0.000240 \ 4; \\ \alpha(N) = 6.16 \times 10^{-5} \ 9; \ \alpha(O) = 1.269 \times 10^{-5} \ 18 \\ \alpha(P) = 1.557 \times 10^{-6} \ 22$
		1800.2		0.0	0^{+}	E0			26 3	
1805.95	2+	1078.62 10	100 3	727.330	2+	M1+E2	-0.135 35	0.0169 3		$\alpha(K)=0.01386\ 22;\ \alpha(L)=0.00234\ 4;\ \alpha(M)=0.000549\ 9;$ $\alpha(N)=0.0001413\ 22;\ \alpha(O)=2.96\times10^{-5}\ 5$ $\alpha(P)=3\ 84\times10^{-6}\ 6$
		1806.0 5	16 4	0.0	0^{+}	[E2]		0.00261		$\alpha(K) = 0.00200 \ 3; \ \alpha(L) = 0.000338 \ 5; \ \alpha(M) = 7.94 \times 10^{-5} \ 12; \alpha(N) = 2.04 \times 10^{-5} \ 3; \ \alpha(O) = 4.24 \times 10^{-6} \ 6 \alpha(P) = 5.40 \times 10^{-7} \ 8$
1833.89	10+	357.5 [#] 1	100 [#]	1476.39	8+	E2		0.0761		α(K)=0.0453 7; α(L)=0.0230 4; α(M)=0.00592 9; α(N)=0.001519 22; α(O)=0.000298 5 α(P)=3.08×10-5 5 B(E2)(W.u.)=2.2 +8-4 Mult.: Q from γ(θ) in 208Pb(9Be,αnγ), M2 excluded by comparison to RUL.
1945.83	(4)	813.3 [#] 1	100 [#]	1132.51	4+	(D) [‡]				
1987.59	(8)	234.6 [‡] 5	15 [‡] 8	1752.86	(8 ⁻)	(D) [‡]				
2002 (4(-)	$511.2^{\#}$ 1	100 [#] 19	1476.39	8 ⁺	(D)+				
2002.6	4 ⁽⁻⁾	465.7*3 661.5 # 1	100+ 100#	1536.85	3 6 ⁺	D*				
2010.99	(0)	953 1 [‡] 5	100	1333.49	0 4 ⁺	(D) [•]				
2101.4	5	968.9 [#] 5	100#	1132.51	4+	D‡				
2103.45	5	157.2 [‡] 5	15 [‡] 8	1945.83	(4)	-				
		315.5 [‡] 5	12 [‡] 8	1788.07	(6 ⁻)					

S

From ENSDF

²¹²₈₄Po₁₂₈-5

$\gamma(^{212}\text{Po})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^π	Mult. [†]
2103.45	5	358.5 [‡] 5	42 [‡] 12	1744.9	(4 ⁻)	
		566.3 [‡] 5	54 [‡] 12	1536.85	3	Q [‡]
		748.1 [‡] 5	23 [‡] 12	1355.49	6+	
		971.1 [‡] 5	100 [‡] 19	1132.51	4+	D^{\ddagger}
2170.1		633.2 [‡] 5	100 [‡]	1536.85	3	
2228.69	7	873.2 [#] 1	100	1355.49	6+	D^{\ddagger}
2237.3		249.7 [‡] 5	43 [‡] 14	1987.59	(8)	
		484.5 [‡] 5	100 [‡] 40	1752.86	(8-)	
2281.7		264.7 [‡] 5	100 [‡] <i>30</i>	2016.99	(6)	
		926.2 [‡] 5	90 [‡] 40	1355.49	6+	D^{\ddagger}
2295.3		758.4 [‡] 5	100 [‡]	1536.85	3	
2336.7	9	502.9 [‡] 5	60 [‡] 20	1833.89	10^{+}	
		860.3 [‡] 5	100 [‡] 40	1476.39	8+	D [‡]
2363.4	(6)	259.6 [‡] 5	50 [‡] 20	2103.45	5	
		575.6 [‡] 5	100 [‡] <i>30</i>	1788.07	(6 ⁻)	D‡
2375.6	7	358.6 [‡] 5	38 [‡] 10	2016.99	(6)	D‡
		587.5 [‡] 5	100 [‡] 17	1788.07	(6 ⁻)	D‡
		622.6 [‡] 5	10 [‡] 3	1752.86	(8-)	D‡
		899.0 [‡] 5	14‡ 7	1476.39	8+	
		1020 [‡] 1	28 [‡] 7	1355.49	6+	D‡
2411.26	(11^{-})	577.4 [#] 1	100 [#]	1833.89	10^{+}	D^{\ddagger}
2421.7		633.6 [‡] 5	100 [‡]	1788.07	(6 ⁻)	
2433.8		205.1 [‡] 5	100 [‡]	2228.69	7	
2467.2	10	633.3 [‡] 20	100 [‡]	1833.89	10^{+}	D^{\ddagger}
2471.44	(9 ⁻)	483.7 [‡] 5	20 [‡] 10	1987.59	(8)	
		637.3 [‡] 5	10 [‡] 5	1833.89	10^{+}	
		718.6 [#] 1	100 [‡] 25	1752.86	(8 ⁻)	D^{\ddagger}
		994.9 [‡] 5	20 [‡] 10	1476.39	8+	
2526.9		774 [‡] 1	100 [‡]	1752.86	(8 ⁻)	
2583.26		172.0 [#] 1	100 [#]	2411.26	(11^{-})	
2604.5	5	601.9 [‡] 5	100 [‡]	2002.6	4(-)	D^{\ddagger}
2605.8		229.8 [‡] 5	43 [‡] 14	2375.6	7	
		853.4 [‡] 5	100 [‡] <i>30</i>	1752.86	(8-)	
2667.3	5	563.8 [‡] 20	100‡	2103.45	5	(D) [‡]

6

E _i (level) 2702.23 2771.72 2782.2	$\frac{J_i^{\pi}}{(12^+)}$ (13 ⁻)	$\frac{E_{\gamma}^{\dagger}}{868.3^{\#} I}$	I_{γ}^{\dagger}	$E_f = J_f^{\pi}$			
2702.23 2771.72 2782.2	(12 ⁺) (13 ⁻)	868.3 [#] 1		<i>v</i>	Mult.	α	Comments
2771.72 2782.2	(13-)		100 [#]	1833.89 10 ⁺	Q [‡]	0.00971	$\alpha(K)=0.00754 \ 11; \ \alpha(L)=0.001643 \ 23; \ \alpha(M)=0.000398 \ 6; \ \alpha(N)=0.0001022 \ 15 \ \alpha(O)=2.09\times10^{-5} \ 3; \ \alpha(P)=2.50\times10^{-6} \ 4$
2782.2		69.2 [‡] 5	60 [‡] <i>30</i>	2702.23 (12+)	E1‡	0.262 7	α (L)=0.199 5; α (M)=0.0477 <i>12</i> ; α (N)=0.0120 <i>3</i> ; α (O)=0.00234 <i>6</i> ; α (P)=0.000247 <i>6</i>
2782.2		360.2 [‡] 5	100 [‡] <i>30</i>	2411.26 (11 ⁻)	Q [‡]		
		310.8 [‡] 5	100 [‡] 70	2471.44 (9 ⁻)			
		371.0 [‡] 5	100 [‡] <i>30</i>	2411.26 (11 ⁻)			
2838.9		1005 [‡] 1	100‡	1833.89 10+			
2860.7		757.2 [‡] 20	100‡	2103.45 5			
2863.5		452.2 [‡] 5	100 [‡]	2411.26 (11 ⁻)			
2865.8	7	490.2 [‡] 20	100 [‡]	2375.6 7	D‡		
2869.1		397.7 [‡] 20	100 [‡]	2471.44 (9 ⁻)	D‡		
2877.6		875.0 [‡] 5	100 [‡]	2002.6 4 ⁽⁻⁾			
2881.8		518.4 [‡] 5	100 [‡]	2363.4 (6)			
2882.9		1049 [‡] 2	100 [‡]	1833.89 10+			
2885.4	(14+)	113.3 [‡] 5	60 [‡] 20	2771.72 (13 ⁻)	E1‡	0.330	α (K)=0.261 4; α (L)=0.0527 8; α (M)=0.01250 18; α (N)=0.00317 5; α (O)=0.000631 9 α (P)=7.06×10 ⁻⁵ 10
		182.6 [‡] 5	100 [‡] 40	2702.23 (12 ⁺)	E2 [‡]	0.653 12	$\alpha(\mathbf{F}) = 7.00 \times 10^{-10}$ $\alpha(\mathbf{K}) = 0.203 \ 3; \ \alpha(\mathbf{L}) = 0.334 \ 7; \ \alpha(\mathbf{M}) = 0.0885 \ 17; \ \alpha(\mathbf{N}) = 0.0227 \ 5; \ \alpha(\mathbf{O}) = 0.00430 \ 8^{-10}$
2930	(18^{+})	(45, 10)	100	2885.4 (14 ⁺)	[F4]		$\alpha(P)=0.000407.8$ E : unobserved x ray, energy deduced from level scheme
2942.1	(10)	474 9 5	100	2467.2 10	[L-4]		Ly. another y ray, energy deduced from level science.
2975 5		1620 2	100	1355.49 6+			
3006.6		1172 7 5	100	1833.89 10+			
3012.4		406.6 [‡] 20	100	2605.8	$(D)^{\ddagger}$		
3024 5		1669 [‡] 2	100	1355.49 6+			
3037.4		255.2 \$ 5	100	2782.2			
3112.9		410.7^{\ddagger} 5	100	2702.23 (12 ⁺)			
3156.0	7	780.4 [‡] 20	100	2375.6 7	D‡		
3176.8		291.4 [‡] 5	100	2885.4 (14 ⁺)	~		
3195.0		492.8 [‡] 5	100	2702.23 (12 ⁺)			
3204.9		1371 [‡] 2	100 [‡]	1833.89 10 ⁺			
3211.6		740.2 [‡] 20	100 [‡]	$2471.44 (9^{-})$			

7

L

Adopted Levels, Gammas (continued)

 $\gamma(^{212}\text{Po})$ (continued)

- [†] From ²¹²Bi β⁻ decay (60.55 min), except where noted. [‡] From ²⁰⁸Pb(¹⁸O, ¹⁴Cγ). [#] From ²⁰⁸Pb(⁹Be, αnγ).

 ∞

Legend

Level Scheme

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

²¹²₈₄Po₁₂₈

Level Scheme (continued)

Intensities: Relative photon branching from each level

²¹²₈₄Po₁₂₈

Level Scheme (continued)

Intensities: Relative photon branching from each level

