Adopted Levels, Gammas

		Histor	У	
	Туре	Author	Citation	Literature Cutoff Date
	Full Evaluation	K. Auranen and E. A. Mccutchan	NDS 168, 117 (2020)	1-Aug-2020
$Q(\beta^{-})=-3317 \ 14; S(\beta^{-})=-16325 \ 18; S(\beta^{-})=16325 \ 18; S(\beta^{-})=16325 \ 18; S(\beta^{-})=16325 \ 18; S(\beta^{-})=-3317 \ 14; S(\beta^{-$	$S(n)=7447 \ 15; S(p)$ (2p)=6122 12; Q(ε_{1}	=2050 11; $Q(\alpha)$ =6529.0 16 2017 p)=842 9 (2017Wa10).	Wa10	

Hyperfine structure. Optical laser spectroscopy: 1990Ar25.

Hyperfine structure. Laser trap: 2002Sp04, 2002Sp02, 2000Gr20, 1999Gr15.

Isotope shift : 2014Co18.

Mass measurement : 2019An10.

 α : Additional information 1.

²¹²Fr Levels

Cross Reference (XREF) Flags

A

²¹⁶Ac α decay (440 μ s) ¹⁹⁸Pt(¹⁹F,5n γ), ²⁰⁵Tl(¹²C,5n γ) В

E(level) [†]	Jπ‡	$T_{1/2}^{\#}$	XREF	Comments
0.0	5+	20.0 min 6	AB	$\begin{aligned} & \% \varepsilon + \% \beta^{+} = 57 \ 2; \ \% \alpha = 43 \ 2 \ (1950 \text{Hy}27) \\ & Q = -0.10 \ 1 \ (1985 \text{Co}24) \\ & \mu = 4.62 \ 9 \ (1985 \text{Co}24); \ \text{configuration} = \pi \ (h_{9/2}^{+5}) \\ & \text{Configuration} = (\pi h_{9/2}^{+5}) (\nu p_{1/2}^{-1}) \\ & J^{\pi}: \ J \ \text{from atomic beam} \ (1978 \text{Ek}02), \ \pi \ \text{from shell-model configuration} \ \text{and} \ \mu. \\ & T_{1/2}: \ \text{weighted average of } 19.3 \ \text{min} \ 5 \ (1950 \text{Hy}27) \ \text{and} \ 20.6 \ \text{min} \ 3 \ (1981 \text{Va}27). \\ & \% \alpha, \% \varepsilon + \% \beta^{+}: \ \text{from } 1950 \text{Hy}27 \ \text{based on} \ (\varepsilon + \beta^{+})/\alpha = 1.3 \ 1 \ \text{determined from} \\ & \text{growth and decay of daughter nuclide} \ (^{212} \text{Rn}) \ \alpha \ \text{activity}. \\ & \mu, Q: \ \text{from atomic beam laser spectroscopy} \ (1985 \text{Co}24, 2016 \text{St}14). \end{aligned}$
82.47 5	(4 ⁺)		Α	J^{π} : analogy with ²¹⁴ Fr(α) to ²¹⁰ At and ²¹² At(α) to ²⁰⁸ Bi.
500.71 7			A	
536.34 8			A	
542.10 10	7+	<0.4 ns	AB	Configuration= $(\pi h_{9/2}^{+5})(\nu f_{5/2}^{-1})$ J ^{π} : E2 542 γ to 5 ⁺ g.s.
574.88 <i>11</i> 606.22 <i>7</i> 610.60 <i>20</i> 777.29 <i>9</i>			A A A A	
853.72 7 937.26 10 1008.7 4 1129.9 4 1209.5 5 1239.9 4 1287.1 8 1356.0 20 1375 22 22	$(4^+,5^+,6^+)$ $(4^+,5^+,6^+)$		A A A A A A A A	J^{π} : (M1) 854 γ to 5 ⁺ g.s. J^{π} : (M1) 937 γ to 5 ⁺ g.s.
1389.30 22	9+	<2 ns	В	Configuration= $(\pi h_{1/2}^{+5})(\nu p_{1/2}^{-1})$ I^{π} . F2 847 α to 7 ⁺ level
1551.30 24	11+	31.9 µs 7	В	$\mu = 9.89 \ 4 \ (1977\text{Be56})$ Configuration= $(\pi h_{9/2}^{+5})(\nu p_{1/2}^{-1}); \ g=0.899 \ 4 \ (1977\text{Be56})$ J ^{\pi} : E2 162\gamma to 9 ⁺ level. \mu: from Stroboscopic Observation of Perturbed Angular Distribution (1977Be56).
1879.7 <i>3</i>	12+	<2 ns	В	Configuration= $(\pi(h_{7/2}^{+4}(\pi f_{7/2}^{1})(\nu p_{1/2}^{-1}))$ J ^{π} : M1 328 γ to 11 ⁺ level.
2337.6 4	(13 ⁺)	<2 ns	В	J^{π} : (M1+E2) 458 γ to 12 ⁺ level.

Adopted Levels, Gammas (continued)

²¹²Fr Levels (continued)

E(level) [†]	J ^{π‡}	T _{1/2} #	XREF	Comments
2492.1 3	15-	603 ns 28	В	$Q=(-)0.84$ (1990By03); $\mu=15.64$ 12 (1989By01) Configuration= $(\pi h^{+4})(\pi i_{12/2}=1)(\nu n^{-1})$
				J^{π} : E3 612 γ to 12 ⁺ level.
				μ: from Time Dependent Perturbed Angular Distribution (1989By01). Q: from Time Dependent Perturbed Angular Distribution (1990By03,2016St14). Other value: -0.80.12 Level Mixing Spectroscopy (1991Ha02) Other: 1990Ha30
2495.7 4	(14 ⁻)	<2 ns	В	J^{π} : 468 γ from 16 ⁻ , D 158 γ to (13 ⁺).
2612.4 4	(14 ⁺)	<1.4 ns	В	Configuration= $(\pi h_{9/2}^{+4})(\pi f_{1/2}^{-1})(\nu f_{5/2}^{-1})$ J ^{π} : (Q) 733 γ to 12 ⁺ level; D γ to (13 ⁺) level.
2951.6 4	(16 ⁺)	<2 ns	В	Configuration= $(\pi h_{9/2}^{+4})(\pi f_{7/2}^{-1})(\nu p_{1/2}^{-1})$ J ^{π} : (E1) 459.5 γ to 15 ⁻ level.
2964.0 <i>3</i>	16-	<1.4 ns	В	Configuration= $(\pi h_{9/2}^{+4})(\pi i_{13/2}^{1})(\nu f_{5/2}^{-1})$ J ^{π} : M1 472 γ to 15 ⁻ level.
3240.9 <i>3</i>	17-	<1.4 ns	В	Configuration= $(\pi(h_{9/2}^{+4})(\pi i_{13/2}^{1})(\nu(f_{5/2}^{-1}) + (\pi(h_{9/2}^{+4})(\pi i_{13/2}^{1}))(\nu(p_{1/2}^{-1}))$. J^{π} : M1 277 γ to 16 ⁻ level; E2 749 γ to 15 ⁻ level.
3256.2? 5		<1.4 ns	В	
3583.5 4	19-	<1.4 ns	В	Configuration= $(\pi h_{9/2}^{+4})(\pi i_{13/2}^{1})(\nu(p_{1/2}^{-1}))$ J ^{π} : E2 343 γ to 17 ⁻ level.
3750.8 5		<1.4 ns	В	
4025.5 4	20-	<2 ns	В	Configuration= $(\pi h_{9/2}^{+4})(\pi i_{13/2}^{-1})(\nu (f_{5/2}^{-1}))$ J ^{π} : M1 442 γ to 19 level.
4081.8? 6	2 0-	<1.4 ns	В	$a_{1} = a_{1} + a_{2} + a_{3} + a_{1} + a_{2} + a_{3} + a_{1} + a_{2} + a_{3} + a_{3$
4137.2 4	20-	<2 ns	В	Configuration= $(\pi h_{9/2}^{-2})(\pi t_{1/2}^{-1})(\nu(p_{1/2}^{-1}))$ J ^{π} : M1 554 γ to 19 ⁻ level.
4447.16		<1.4 ns	В	
4499.1 J	21-	<2 118	D	Configuration $-(-h^{\pm})(-i) = \frac{1}{2}(-i)(-i)$
4340.9 4	21	<2 115	D	$\begin{array}{c} \text{Configuration}_{-(\pi f_{9/2})(\pi f_{1/2})}(\nu f_{1/2}) + \\ (\pi (h_{9/2}^{+3})(\pi f_{1/2})(\pi f_{7/2})(\nu (p_{1/2}^{-1}). \\ J^{\pi}: M1 \gamma' \text{s to } 20^{-} \text{ levels.} \end{array}$
4632.1 6			В	
4634.1 6			В	
4765.0? 5	22^{+}	4.00 35	В	(100(D, 01))
4834.2 4	221	4.23 ns 35	В	$\mu = 22.4 (1986By01)$ Configuration= $(\pi h_{13/2}^{+3})(\pi i_{13/2}^{+2})(\nu(p_{1/2}^{-1}))$
				μ : from Time Dependent Perturbed Angular Distributions (1986By01).
4907.7 6			В	
5056.0 <i>5</i> 5161.1 <i>6</i>	(23 ⁺)	<2.4 ns	B B	J^{π} : (M1) 222 γ to 22 ⁺ level.
5266.2 5	(24^+)	<2 ns	В	J^{π} : M1+E2 210 γ to (23 ⁺) level.
5803.1 6	(25^{+})	<2 ns	В	J^{*} : M1+E2 53/ γ to (24 ⁺) level.
3834.3 0	(27)	312 ns 21	В	$Q=(-)1.7 (1990By03); \mu=21.9 3 (1980By01)$ Configuration= $(\pi h_{13/2}^{+3})(\pi i_{13/2}^{+2})(\nu p_{1/2/2})(\nu g_{9/2/1})$ M_{*} E2.588ts (245) here is a second
				 μ: from Time Dependent Perturbed Angular Distributions (1986By01). Q: from Time Dependent Perturbed Angular Distributions (1990By03,2016St4). Other value: 1.5.3.4 and Mining Spectroscopy: (1001U102). Other: 1000U120.
6055 5 6	(28)		R	Other value: -1.5 S, Level WIXIng Spectroscopy (1991Ha02). Other: 1990Ha30. I^{π_1} D 201 $_{22}$ to (27 ⁻) level
6344.7 6 6671 0 8	(28) (28^{-})	<1.4 ns	B B	J^{π} : M1 490 γ to (27 ⁻) level.
6976.8 <i>6</i> 7053.9 8	(29)	<1.4 ns	B B	J^{π} : (M1+E2) 921.5 γ to (28) level.
7253.7 9			В	
7660.6 7 8255.6 7	(29+)	<2 ns	B B	J^{π} : E1 1316 γ to (28 ⁻) level.
8406.9 11			В	

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

²¹²Fr Levels (continued)

E(level) [†]	$T_{1/2}^{\#}$	XREF	Comments
8533.2 11	23.6 µs 21	В	J^{π} : 1990By02 suggest J^{π} =34 ⁺ for this level. E(level): search for fission from this high-spin isomeric level was performed in 1997Wa36.

[†] From a least-squares fit to E γ data. For γ rays given without uncertainty, 1 keV uncertainty has been assumed for the calculation.

^{\ddagger} For excited levels, based on measured multipolarities of transitions. For states populated in ¹⁹⁸Pt(¹⁹F,5n\gamma),²⁰⁵Tl(¹²C,5n\gamma)

there is an assumption of increasing spin with increasing excitation energy. [#] All values for excited levels are from 198 Pt(19 F,5n γ), 205 Tl(12 C,5n γ).

Adopted Levels, Gammas (continued)										
$\frac{\gamma(^{212}\mathrm{Fr})}{}$										
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$E_f = J_f^{\pi}$	Mult. [‡]	α	Comments			
82.47	(4^{+})	82.6 [@] 1	100 [@]	0.0 5+						
500.71		418.3 [@] 1	100 [@] 6	82.47 (4+)						
		500.7 [@] 1	53 [@] 4	0.0 5+						
536.34		453.9 [@] 1	9 [@] 1	82.47 (4+)						
542.10	-+	536.3 [@] 1	100 [@] 6	$0.0 5^+$	50	0.0005				
542.10	7+	542.2 1	100	0.0 5+	E2	0.0305	$\alpha(K)=0.0208 \ 3; \ \alpha(L)=0.00725 \ 11; \ \alpha(M)=0.00184 \ 3; \ \alpha(N)=0.000483 \ 7; \ \alpha(Q)=0.0001040 \ 15$			
							$\alpha(P)=1.515\times10^{-5} 22; \ \alpha(Q)=4.69\times10^{-7} 7$			
57 4.00		400 4@& 1	100@ (00.47 (4+)			B(E2)(W.u.)>0.39			
574.88		492.4 ° × 1	$100 \overset{\circ}{\sim} 4$	82.47 (41)						
606 22		5/5.0 - 4 105.8 @ 2	1.3 - 4 11 @ 3	0.0 5 ⁻						
000.22		$523.7^{@}1$	$11 \ 3$ $100^{@} 7$	$82.47(4^+)$						
		606.2° 1	$60^{@} 7$	$0.0 5^+$						
610.60		$610.6^{\textcircled{0}}{2}$	100 [@]	$0.0 5^+$						
777.29		276.6 [@] 2	1.3 [@] 6	500.71						
		694.8 [@] 1	100 [@] 5	82.47 (4+)						
		777.3 [@] 2	14 [@] 2	0.0 5+						
853.72	$(4^+, 5^+, 6^+)$	352.9 [@] 2	1.2 [@] 5	500.71						
		771.3 [@] 1	77 [@] 4	82.47 (4+)						
		853.7 ^{^w} 1	100 ^{@} 4	$0.0 5^+$	(M1)	0.0397	$\alpha(K) = 0.02225$; $\alpha(L) = 0.00560$ %; $\alpha(M) = 0.001248$ (0; $\alpha(M) = 0.000252$ 5;			
							$\alpha(\mathbf{N})=0.0522, \alpha(\mathbf{L})=0.00509, \alpha(\mathbf{M})=0.001548, 19, \alpha(\mathbf{N})=0.000555, \alpha(\mathbf{O})=7.90\times10^{-5}, 11$			
							$\alpha(P) = 1.269 \times 10^{-5} \ 18; \ \alpha(Q) = 7.13 \times 10^{-7} \ 10$			
			0				Mult.: from $\alpha(K)$ in ²¹⁶ Ac α decay (440 μ s).			
937.26	$(4^+, 5^+, 6^+)$	855.8 [@] 7	≤5 [@]	82.47 (4 ⁺)						
		937.2 ^{^w 1}	100 2	$0.0 5^+$	(M1)	0.0311	α (K)exp=0.027 <i>17</i> α (K)=0.0253 <i>4</i> ; α (L)=0.00445 <i>7</i> ; α (M)=0.001054 <i>15</i> ; α (N)=0.000276 <i>4</i> ;			
							$\alpha(O)=6.18\times10^{-5}$ 9			
							$\alpha(P)=9.93\times10^{-6}$ 14; $\alpha(Q)=5.58\times10^{-7}$ 8			
1009 7		1008 7 @ 1	100@	0.0 5+			Mult.: from $\alpha(\mathbf{K})$ in ^{21°} Ac α decay (440 μ s).			
1129.9		1008.7 - 4 $1047.5^{@}$ 0	85 [@] 50	$82.47 (4^+)$						
1127.7		$11299^{6}5$	$100^{@} 40$	02.77 (4) 00 5 ⁺						
1209.5		1209.5 [@] 5	100@	0.0 5+						
1239.9		1239.9 [@] 4	100 [@]	0.0 5+						

4

From ENSDF

 $^{212}_{87}\mathrm{Fr}_{125}$ -4

L

					A	dopted Leve	els, Gammas	s (continued)		
$\gamma^{(212}$ Fr) (continued)										
E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	E_f	J_f^π	Mult. [‡]	α	Comments		
1287.1 1356.0 1375.22		1287.1 [@] 8 1356 [@] 2 436.8 [@] 6 1293.1 [@] 4	100 [@] 100 [@] 17 [@] 6 45 [@] 17	0.0 0.0 937.26 82.47	$ \frac{5^{+}}{5^{+}} $ (4 ⁺ ,5 ⁺ ,6 ⁺) (4 ⁺)					
1389.30	9+	1375.3 <i>3</i> 847.2 2	100 20 100	0.0 542.10	5+ 7+	E2	0.01182	α (K)=0.00898 <i>13</i> ; α (L)=0.00214 <i>3</i> ; α (M)=0.000526 <i>8</i> ; α (N)=0.0001378 20; α (O)=3.02×10 ⁻⁵ <i>5</i> α (P)=4 59×10 ⁻⁶ <i>7</i> ; α (O)=1 94×10 ⁻⁷ <i>3</i>		
1551.30	11+	162.0 <i>1</i>	100	1389.30	9+	E2	1.214	B(E2)(W.u.)>0.0085 α (K)=0.241 4; α (L)=0.717 11; α (M)=0.193 3; α (N)=0.0507 8; α (O)=0.01056 15 α (P)=0.001385 20; α (Q)=7.62×10 ⁻⁶ 11		
1879.7	12+	328.4 2	100	1551.30	11+	M1	0.508	B(E2)(W.u.)=0.000956 23 α (K)=0.410 6; α (L)=0.0742 11; α (M)=0.01765 25; α (N)=0.00463 7; α (O)=0.001035 15 α (P)=0.0001660 24; α (Q)=9.27×10 ⁻⁶ 13		
2337.6	(13+)	457.9 2	100	1879.7	12+	(M1+E2)	0.126 81	B(M1)(W.u.)>0.00021 α (K)=0.098 69; α (L)=0.0212 89; α (M)=0.0051 20; α (N)=0.00135 52; α (O)=3.0×10 ⁻⁴ 12		
2492.1	15-	612.4 <i>1</i>	100	1879.7	12+	E3	0.0711	$\begin{aligned} &\alpha(P)=4.6\times10^{-5}\ 21;\ \alpha(Q)=2.2\times10^{-6}\ 16\\ &\alpha(K)=0.0396\ 6;\ \alpha(L)=0.0233\ 4;\ \alpha(M)=0.00615\ 9;\ \alpha(N)=0.001620\ 23;\\ &\alpha(O)=0.000347\ 5\\ &\alpha(P)=4.98\times10^{-5}\ 7;\ \alpha(Q)=1.218\times10^{-6}\ 17 \end{aligned}$		
2495.7	(14-)	158.0 <i>3</i>	100	2337.6	(13+)	(E1)	0.1558	B(E3)(W.u.)=21.8 <i>11</i> α (K)=0.1235 <i>19</i> ; α (L)=0.0245 <i>4</i> ; α (M)=0.00586 <i>9</i> ; α (N)=0.001517 <i>23</i> ; α (O)=0.000328 <i>5</i> α (P)=4.83×10 ⁻⁵ <i>8</i> ; α (Q)=1.98×10 ⁻⁶ <i>3</i> B(E1)(W.u.)>2.1×10 ⁻⁵ Mult.: D from $\gamma(\theta)$ in ¹⁹⁸ Pt(¹⁹ F,5n γ), ²⁰⁵ Tl(¹² C,5n γ), $\Delta\pi$ =yes from		
2612.4	(14+)	275.0 <i>3</i> 732.6 <i>3</i>	100 2 98 4	2337.6 1879.7	(13 ⁺) 12 ⁺	D (O)		level scheme.		
2951.6	(16 ⁺)	339.3 3	100 <i>1</i>	2612.4	(14+)	[E2]	0.1010	$\alpha(K)=0.0539 \ 8; \ \alpha(L)=0.0349 \ 5; \ \alpha(M)=0.00916 \ 14; \ \alpha(N)=0.00240 \ 4; \ \alpha(O)=0.000509 \ 8 \ \alpha(P)=7.05\times10^{-5} \ 11; \ \alpha(Q)=1.280\times10^{-6} \ 19 \ B(E2)(W.u.)>0.45 \ Mult : from I^{\pi} and I^{\pi}$		
		459.5 2	73 2	2492.1	15-	(E1)	0.01355	$\begin{aligned} \alpha(\mathrm{K}) = 0.01106 \ I6; \ \alpha(\mathrm{L}) = 0.00190 \ 3; \ \alpha(\mathrm{M}) = 0.000448 \ 7; \ \alpha(\mathrm{N}) = 0.0001167 \\ I7; \ \alpha(\mathrm{O}) = 2.57 \times 10^{-5} \ 4 \\ \alpha(\mathrm{P}) = 4.00 \times 10^{-6} \ 6; \ \alpha(\mathrm{Q}) = 2.00 \times 10^{-7} \ 3 \\ \mathrm{B}(\mathrm{E1})(\mathrm{W.u.}) > 3.9 \times 10^{-7} \end{aligned}$		

S

L

Adopted Levels, Gammas (continued)

$\gamma(^{212}\text{Fr})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	$\delta^{\#}$	α	Comments
2964.0	16-	468.0 5	6.8 5	2495.7	(14^{-})	[E2]			B(E2)(W.u.)>0.012 ?
270.110	10	471.9 1	100 1	2492.1	15-	M1		0.190	$\alpha(K)=0.1541\ 22;\ \alpha(L)=0.0276\ 4;\ \alpha(M)=0.00656\ 10;\ \alpha(N)=0.001720\ 25;$
									$\alpha(0)=0.000385.6$
									$\alpha(P)=6.1/\times 10^{-5}$ 9; $\alpha(Q)=3.45\times 10^{-6}$ 5
3240.9	17-	277.0 1	53.0 8	2964.0	16-	M1		0.811	B(M1)(w.u.)>0.00012 $\alpha(K)=0.654$ 10; $\alpha(L)=0.1188$ 17; $\alpha(M)=0.0283$ 4; $\alpha(N)=0.00741$ 11;
									$\alpha(0) = 0.001657/24$
									α (P)=0.000266 4; α (Q)=1.483×10 ⁻⁵ 21 B(M1)(W.u.)>0.00019
		289.3 2	11.0 4	2951.6	(16 ⁺)	E1		0.0371	α (K)=0.0300 5; α (L)=0.00543 8; α (M)=0.001290 19; α (N)=0.000335 5; α (O)=7.34×10 ⁻⁵ 11
									$\alpha(P)=1.119\times10^{-5}$ 16; $\alpha(Q)=5.19\times10^{-7}$ 8
									$B(E1)(W.u.) > 2.9 \times 10^{-7}$
									Mult.: D from $\gamma(\theta)$ in ¹⁵⁶ Pt(¹⁵ F,Sn γ), ²⁰⁵ Tl(¹² C,Sn γ); $\Delta \pi$ =yes from level scheme.
		748.8 1	100.0 17	2492.1	15-	E2		0.01517	$\alpha(K)=0.01128 \ 16; \ \alpha(L)=0.00293 \ 4; \ \alpha(M)=0.000726 \ 11; \ \alpha(N)=0.000190 \ 3; \ \alpha(Q)=4.15\times10^{-5} \ 6$
									$\alpha(0) = 6.24 \times 10^{-6} \ 9; \ \alpha(0) = 2.46 \times 10^{-7} \ 4$
									B(E2)(W.u.) > 0.011
3256.2?		304.5 <i>3</i>	100	2951.6	(16^{+})				
3583.5	19-	342.6 2	100	3240.9	17-	E2		0.0982	α (K)=0.0528 8; α (L)=0.0337 5; α (M)=0.00884 13; α (N)=0.00232 4; α (O)=0.000491 7
									$\alpha(P) = 6.81 \times 10^{-5} \ 10; \ \alpha(Q) = 1.253 \times 10^{-6} \ 18$ B(F2)(Wu) > 1.0
3750.8		494.6 2	100	3256.2?		M1+E2	0.7 5	0.125 38	$\alpha(\text{K})=0.099\ 33;\ \alpha(\text{L})=0.020\ 5;\ \alpha(\text{M})=0.0047\ 10;\ \alpha(\text{N})=0.0012\ 3;\ \alpha(\text{O})=0.00027\ 6$
									$\alpha(0) = 0.00027 = 0$ $\alpha(D) = 4.3 \times 10^{-5} 10; \alpha(D) = 2.23 \times 10^{-6} 72$
									$B(M1)(W_{\rm H}) > 4.6 \times 10^{-5}$: $B(F2)(W_{\rm H}) > 0.006$
4025.5	20^{-}	442.0 2	100	3583.5	19-	M1		0.227	$\alpha(\mathbf{K}) = 0.184 \ 3; \ \alpha(\mathbf{L}) = 0.0330 \ 5; \ \alpha(\mathbf{M}) = 0.00784 \ 11; \ \alpha(\mathbf{N}) = 0.00205 \ 3; \ \alpha(\mathbf{O}) = 0.000459 \ 7$
									$\alpha(P)=7.37\times10^{-5}$ 11; $\alpha(Q)=4.12\times10^{-6}$ 6
									B(M1)(W.u.) > 0.00010
4081.8?		331.0 3	100	3750.8					
4137.2	20^{-}	111		4025.5	20-				
		553.7 2		3583.5	19-	M1		0.1243	α (K)=0.1006 <i>15</i> ; α (L)=0.0180 <i>3</i> ; α (M)=0.00427 <i>6</i> ; α (N)=0.001118 <i>16</i> ; α (O)=0.000250 <i>4</i>
									$\alpha(P)=4.01\times10^{-5}$ 6; $\alpha(Q)=2.25\times10^{-6}$ 4
									$B(M1)(W.u.) > 5.8 \times 10^{-5}$
4447.1		365.3 2	100	4081.8?					
4499.1		361.9 <i>3</i>	100	4137.2	20^{-}				
4546.9	21-	409.6 1	76 1	4137.2	20^{-}	M1		0.279	α (K)=0.225 4; α (L)=0.0405 6; α (M)=0.00964 14; α (N)=0.00253 4; α (O)=0.000565 8

6

					Ad	opted Levels,	Gammas (cor	ntinued)	
γ ⁽²¹² Fr) (continued)									
E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [‡]	$\delta^{\#}$	α	Comments	
4546.9	21-	521.4 2	100 2	4025.5 20-	M1		0.1458	$\begin{aligned} &\alpha(\mathrm{P})=9.07\times10^{-5}\ 13;\ \alpha(\mathrm{Q})=5.07\times10^{-6}\ 7\\ &\mathrm{B}(\mathrm{M1})(\mathrm{W.u.})>5.7\times10^{-5}\\ &\alpha(\mathrm{K})=0.1181\ 17;\ \alpha(\mathrm{L})=0.0211\ 3;\ \alpha(\mathrm{M})=0.00502\ 7;\ \alpha(\mathrm{N})=0.001315\\ &19;\ \alpha(\mathrm{O})=0.000294\ 5\\ &\alpha(\mathrm{P})=4.72\times10^{-5}\ 7;\ \alpha(\mathrm{Q})=2.64\times10^{-6}\ 4\\ &\mathrm{B}(\mathrm{M1})(\mathrm{W.u.})>3.7\times10^{-5} \end{aligned}$	
4632.1 4634.1 4765.0?		881.3 ^{&} 3 883.3 ^{&} 3 217.8 ^{&} 5 739.6 3	100 100	3750.8 3750.8 4546.9 21 ⁻ 4025.5 20 ⁻					
4834.2	22+	287.3 1	100	4546.9 21-	E1		0.0377	$\begin{aligned} &\alpha(\mathrm{K}) = 0.0305 \ 5; \ \alpha(\mathrm{L}) = 0.00552 \ 8; \ \alpha(\mathrm{M}) = 0.001312 \ 19; \ \alpha(\mathrm{N}) = 0.000341 \\ &5; \ \alpha(\mathrm{O}) = 7.46 \times 10^{-5} \ 11 \\ &\alpha(\mathrm{P}) = 1.138 \times 10^{-5} \ 16; \ \alpha(\mathrm{Q}) = 5.27 \times 10^{-7} \ 8 \\ &\mathrm{B}(\mathrm{E1})(\mathrm{W.u.}) = 1.83 \times 10^{-6} \ 16 \end{aligned}$	
4907.7 5056.0	(23+)	273.6 ^{&} 3 (148) 221.9 3	100	4634.1 4907.7 4834.2 22 ⁺	(M1)		1.500	$\alpha(K)=1.210 \ 18; \ \alpha(L)=0.220 \ 4; \ \alpha(M)=0.0525 \ 8; \ \alpha(N)=0.01377 \ 20; \ \alpha(O)=0.00308 \ 5 \ \alpha(D)=0.000404 \ 8; \ \alpha(O)=2.75\times10^{-5} \ 4$	
5161.1 5266.2	(24+)	529.0 ^{&} 3 210.2 <i>I</i>	100 100	4632.1 5056.0 (23+) M1+E2	1.3 +6-4	0.94 24	$\alpha(K) = 0.62 \ 23; \ \alpha(L) = 0.242 \ 6; \ \alpha(M) = 0.0619 \ 9; \ \alpha(N) = 0.01624 \ 24; \\ \alpha(O) = 0.00348 \ 6$	
5803.1	(25+)	536.9 2	100	5266.2 (24+) M1+E2	1.1 +19–6	0.078 <i>37</i>	$\begin{aligned} &\alpha(P) = 0.000500 \ 23; \ \alpha(Q) = 1.44 \times 10^{-3} \ 51 \\ &B(M1)(W.u.) > 1.2 \times 10^{-4}; \ B(E2)(W.u.) > 1.9 \\ &\alpha(K) = 0.061 \ 31; \ \alpha(L) = 0.0129 \ 43; \ \alpha(M) = 0.00314 \ 97; \ \alpha(N) = 8.2 \times 10^{-4} \\ &26; \ \alpha(O) = 1.82 \times 10^{-4} \ 58 \end{aligned}$	
5854.5	(27-)	588.3 2	100	5266.2 (24+) E3		0.0798	$\alpha(P)=2.83\times10^{-5} \ 99; \ \alpha(Q)=1.37\times10^{-6} \ 70$ B(M1)(W.u.)>6.4×10 ⁻⁶ ; B(E2)(W.u.)>0.015 $\alpha(K)=0.0431 \ 6; \ \alpha(L)=0.0272 \ 4; \ \alpha(M)=0.00718 \ 11; \ \alpha(N)=0.00189 \ 3; \ \alpha(O)=0.000405 \ 6$ $\alpha(P)=5.78\times10^{-5} \ 9; \ \alpha(Q)=1.353\times10^{-6} \ 19$ B(E2)(W.u.)=55 4	
6055.5 6344.7	(28) (28 ⁻)	201.2 <i>3</i> 490.1 <i>2</i>	100 100	5854.5 (27 ⁻ 5854.5 (27 ⁻) D) M1		0.1721	$\alpha(K)=0.1392\ 20;\ \alpha(L)=0.0249\ 4;\ \alpha(M)=0.00593\ 9;\ \alpha(N)=0.001553$ $22;\ \alpha(O)=0.000347\ 5$ $\alpha(P)=5.57\times10^{-5}\ 8;\ \alpha(Q)=3.12\times10^{-6}\ 5$ $P(M1)(W,n) > 0.00011$	
6671.0 6976.8	(29)	326 304 632.1 <i>3</i> 921.5 <i>3</i>	100 71 5 100 5	6344.7 (28 ⁻ 6671.0 6344.7 (28 ⁻ 6055.5 (28))) (M1+E2)	0.6 6	0.0266 74	$\alpha(K)=0.0215\ 61;\ \alpha(L)=0.0039\ 10;\ \alpha(M)=0.00092\ 22;\ \alpha(N)=0.00024$	

7

²¹²₈₇Fr₁₂₅-7

L

From ENSDF

 $^{212}_{87}\mathrm{Fr}_{125}$ -7

						Adopted I	Levels, Gammas (continued)
						<u>2</u>	$\gamma(^{212}\text{Fr})$ (continued)
E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [‡]	α	Comments
							6; $\alpha(O)=5.4\times10^{-5}$ 13 $\alpha(P)=8.6\times10^{-6}$ 22; $\alpha(Q)=4.7\times10^{-7}$ 14
7053.9		77		6976.8 (29)			
		1199		5854.5 (27 ⁻)			
7253.7		909	100	6344.7 (28 ⁻)			
7660.6	(29^{+})	407		7253.7			
		607		7053.9			
		684		6976.8 (29)			
		990.0 5	49 2	6671.0			
		1315.6 5	100 2	6344.7 (28 ⁻)	E1	0.00196	α (K)=0.001576 22; α (L)=0.000248 4; α (M)=5.80×10 ⁻⁵ 9; α (N)=1.513×10 ⁻⁵ 22; α (O)=3.37×10 ⁻⁶ 5
							$\alpha(P)=5.38\times10^{-7} 8$; $\alpha(Q)=3.00\times10^{-8} 5$
							$B(E1)(W.u.) > 2.8 \times 10^{-8}$
8255.6		595.0 <i>3</i>		7660.6 (29 ⁺)			
		1201		7053.9			
8406.9		151	100	8255.6			
8533.2		126		8406.9			
		278		8255.6	(E3)	1.225	α (K)=0.213 3; α (L)=0.739 11; α (M)=0.205 3; α (N)=0.0543 8; α (O)=0.01140 16 α (P)=0.001527 22; α (Q)=1.269×10 ⁻⁵ 18

[†] From ¹⁹⁸Pt(¹⁹F,5n γ),²⁰⁵Tl(¹²C,5n γ), except where noted. [‡] From ce and $\gamma(\theta)$ measurements in ¹⁹⁸Pt(¹⁹F,5n γ),²⁰⁵Tl(¹²C,5n γ), except where noted. [#] Deduced from ce meaurements in ¹⁹⁸Pt(¹⁹F,5n γ),²⁰⁵Tl(¹²C,5n γ). [@] From ²¹⁶Ac (440 μ s) decay. [&] Placement of transition in the level scheme is uncertain.

 $^{212}_{87}\mathrm{Fr}_{125}\text{-}8$

From ENSDF

Adopted Levels, Gammas

Legend

Level Scheme

Intensities: Relative photon branching from each level

 $--- \rightarrow \gamma$ Decay (Uncertain)

 $^{212}_{87}{
m Fr}_{125}$

Adopted Levels, Gammas

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $--- \rightarrow \gamma$ Decay (Uncertain)

 $^{212}_{87}\mathrm{Fr}_{125}$

γ Decay (Uncertain)

Coincidence

Adopted Levels, Gammas Legend Level Scheme (continued) Intensities: Relative photon branching from each level ----- γD ● Coi

 $^{212}_{87}{\rm Fr}_{125}$