²¹⁶At α decay:J=9 1994Li10,1971Br13

History

Type Author Citation Literature Cutoff Date
Full Evaluation K. Auranen and E. A. Mccutchan NDS 168, 117 (2020) 1-Aug-2020

Parent: 216 At: E=400 30; $J^{\pi}=(9^{-})$; $Q(\alpha)=7950$ 3; $\%\alpha$ decay=100.0

 216 At-E: from assumption that the 7960α populates the 239-keV, 25 min isomer in 212 Bi.

 216 At- $T_{1/2}$: on the basis of systematics, taking HF \approx 2 would give a $T_{1/2}$ of approximately 0.1 ms.

1994Li10: 224 Ac activity produced by bombarding targets of 232 Th with 200-MeV protons followed by mass separation. Sources of 216 At were produced in secular equilibrium with 220 Fr and 224 Ac. Measured E α , I α , E γ , I γ , $\alpha\gamma$ coin, ce, α -ce coin, ce- γ coin using Ge detectors for γ rays and Si(Li) for conversion electrons.

1971Br13: 224 Ac activity from parent 228 Pa produced in 232 Th(p,5n) reaction. Sources of 216 At were produced in secular equilibrium with 220 Fr and 224 Ac. Measured E α , I α .

1994Li10 and 1971Br13 both indicate that this is a very tentative decay scheme proposed to account for the observed 7960α .

²¹²Bi Levels

$$\frac{\text{E(level)}^{\dagger}}{239 \ 30} \quad \frac{\text{J}^{\pi \dagger}}{(8^{-},9^{-})} \quad \frac{\text{T}_{1/2}^{\dagger}}{25.0 \ \text{min } 2}$$

 α radiations

Eα E(level) $Iα^{\dagger}$ Comments

[†] From the Adopted Levels.

[†] Absolute intensity per 100 decays.