²¹⁶Fr α decay (850 ns) **2007Ku30**

History

Type Author Citation Literature Cutoff Date
Full Evaluation K. Auranen and E. A. Mccutchan NDS 168, 117 (2020) 1-Aug-2020

Parent: 216 Fr: E=219 8; J^{π} =(9⁻); $T_{1/2}$ =850 ns 30; $Q(\alpha)$ =9174 3; $\%\alpha$ decay≈100.0

2007Ku30: 216 Fr produced as daughter to 220 Ac produced in a 209 Bi(14 N,p2n) 220 Ac fusion evaporation reaction using a 1.1 mg/cm² thick target. The 5.6 MeV/u beam was provided by the cyclotron of Heavy Ion Laboratory of Warsaw University at the intensity of 30 pnA. Nuclei of interest were selected with the IGISOL system, and those were implanted into a 30 μ g/cm² thick carbon foil. Silicon detector setup was used to measure E α , α (t), and $\alpha\alpha$ correlations.

²¹²At Levels

$$\frac{\text{E(level)}^{\dagger}}{222.9 \ 4} \quad \frac{\text{J}^{\pi \dagger}}{(9^{-})} \quad \frac{\text{T}_{1/2}^{\dagger}}{0.121 \ \text{s} \ 2}$$

 α radiations

$$\frac{\text{E}\alpha}{9000 5} \quad \frac{\text{E(level)}}{222.9} \quad \frac{\text{I}\alpha^{\ddagger}}{100} \quad \frac{\text{HF}^{\dagger}}{\approx 1.5}$$

²¹⁶Fr-E,T_{1/2}: From 2007Ku30.

 $^{^{216}}$ Fr-J $^{\pi}$: As proposed by 2007Ku30 based on allowed (HF=1.9) decay to J^{π} =(9 $^{-}$) isomer in 212 At.

²¹⁶Fr-%α decay: α-decay branch ≈100% assumed by the evaluators in order to estimate hindrance factor. α decay is the only decay mode observed.

[†] From the Adopted Levels.

[†] Using $r_0(^{212}At)=1.5522$ 36, average of $r_0(^{214}Rn)=1.5655$ 13, $r_0(^{212}Rn)=1.543$ 4, $r_0(^{212}Po)=1.566$ 6, and $r_0(^{210}Po)=1.534$ 3 (2020Si16).

[‡] For absolute intensity per 100 decays, multiply by ≈ 1.0 .