209 Bi(α ,n γ) 1982Lo01

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	K. Auranen and E. A. Mccutchan	NDS 168, 117 (2020)	1-Aug-2020					

1982Lo01: $E(\alpha)=18.0-20.8$ MeV. Measured $E\gamma$, $I\gamma$, Ice, $\gamma\gamma$, $X\gamma$, $\gamma(E(\alpha))$, $\gamma(\theta)$, $\gamma(t)$ using large coaxial Ge(Li) detectors and a small Ge x-ray detector for γ -rays and a Si(Li) detector combined with a magnetic lens for electrons.

The level scheme proposed by 1979Sj01 from the ²⁰⁸Pb(⁷Li,3n γ) reaction has been confirmed and several additional cascades have been added. The following results of γ (t) experiments have been considered in building the level scheme: 1) 45 γ and 160 γ have both delayed (T_{1/2}=32 ns) and prompt components; 2) 70 γ and 184 γ have no prompt components (70 γ T_{1/2}=32 ns, 184 γ T_{1/2}=20 ns); 3) 55 γ has no delayed component. The intensity of the 160 γ requires its feeding to the g.s. in order to establish a balance between I γ in ²¹²At and the I(62.9 γ) in ²⁰⁸Bi fed by ²¹²At α decay.

Other: 1980Di09: 209 Bi(α ,n) E=45-172.5 MeV; measured excit, isomer ratio by detecting α groups from α decay. Deduced that the reaction is dominated by preequilibrium processes.

 α : Additional information 1.

²¹²At Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	Comments
0.0	1-@		
55.0	0-	<1 ns	J ^{π} : 1982Lo01 suggest J ^{π} =0 ⁻ (of the configuration=((π h _{9/2}) ⁺² ₀₊ (π h _{9/2})(ν g _{9/2})) multiplet) for this level in analogy with ²¹⁰ Bi. However, since gammas of mixed multipolarity feed this level, J=0 is not allowed.
160.4	2-@		
205.6	3-@		
222.9	$(9^{-})^{@}$	0.121 s 2	E(level), $T_{1/2}$, J^{π} : From Adopted Levels,
275 5	5-@	32 ns 1	$(\cdots,), 1/2$
328.1	8 ⁻ @	<1 ns	
345.7	1-	<1 lls	
363.7	2-		
622.6	$(1,2)^{-}$		
635.3	$(1,2)^{-}$		
701.6	10-		configuration= $(\pi h_{9/2} \ _{0+})(\pi h_{9/2})(vi_{11/2}).$
748.1	$(1,2,3,4)^{-}$		
769.0	$(1,2,3,4)^{-}$		
779.2	$(1,2,3,4)^{-}$		
/83.5	(3) $(1224)^{-}$		
840.0 843.0	(1,2,3,4) 7 ⁻		
845.8	$(1234)^{-}$		
885.5	(1,2,3,1) 11^+	20 ns 4	configuration= $(\pi h_{9/2} _{0+})(\pi i_{13/2})(\nu g_{9/2})$. T _{1/2} : from 184 ν (t).
890.4	3-		
920.8	4-		
1082.6	(6 ⁻)		
1117.7	(5)		
1209.6	(6^{-})		
1262.7	12		
1205.1	(11^+)		
1429.8 4	11-		
1457.5	(5^+)		
1540.8	13-		
1604.7	(15 ⁻)		configuration= $(\pi h_{9/2})^3 (vg_{9/2})$. E(level): this level is placed at 1616-keV in 1982Lo02, based on a tentatively placed

209 Bi(α ,n γ) 1982Lo01 (continued)

²¹²At Levels (continued)

E(level) [†]	J ^{π‡}	Comments						
1651.2 1827.6 1933.2	13 ⁺ 12 ⁺ 13 ⁺	75-keV depopulating transition. In subsequent studies in 208 Pb(7 Li,3n γ) (1999Ba30), this level is found to decay by a 63.9 γ resulting in a level energy of 1605 keV. As 1999Ba30 provide more support for the 63.9 γ , we adopt the 63.9 γ and the associated 1605-keV level.						

[†] Deduced by evaluators from $E\gamma$ data.

[‡] As proposed by 1982Lo01 based on multipolarities deduced from $\gamma(\theta)$ and $\alpha(K)$ exp measurements along with comparison to shell model calculations. # From $\gamma(t)$ in 1982L001.

^(a) Dominant component configuration= $((\pi h_{9/2})_{0+}^{+2}(\pi h_{9/2})(\nu g_{9/2})).$

$\gamma(^{212}{\rm At})$

The experimental conversion coefficients are given relative to the M1 coefficient for the 476.8 γ . It appears, however, that the 476.8 γ is not a pure M1 transition (from $\gamma(\theta)$ in both this experiment and in the ²⁰⁸Pb(⁷Li,3n γ) study of 1979Sj01). Thus, the actual $\alpha(K)$ may be smaller than the $\alpha(K)(M1)$ used for normalization, and as a result, all $\alpha(K)$ exp given in this data set may be somewhat higher than their true value. In fact, all $\alpha(K)$ exp for M1 transitions given below are somewhat higher than the corresponding theoretical values. Because of the uncertainty in the $\alpha(K)$ exp, E2 admixture cannot be ruled out in transitions listed as M1.

Eγ	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Mult.	α	Comments
45.1	15.7	205.6	3-	160.4 2-	(M1) [‡]	23.8	α (L)=18.1 3; α (M)=4.30 6; α (N)=1.113 16; α (O)=0.238 4; α (P)=0.0329 5
							Mult.: γ (t) shows a prompt component suggesting M1 multipolarity (1982L001).
55.1	10.2	55.0	0-	0.0 1-	(M1) [‡]	13.21	α (L)=10.06 <i>14</i> ; α (M)=2.38 <i>4</i> ; α (N)=0.618 <i>9</i> ; α (O)=0.1323 <i>19</i> ; α (P)=0.0183 <i>3</i>
							Mult.: γ (t) shows only a prompt component suggesting M1 multipolarity.
63.9		1604.7	(15 ⁻)	1540.8 13-			E_{γ} : From Adopted Gammas. Tentative $E_{\gamma}=75.0 \text{ keV}$ observed in $\gamma\gamma$ coin spectrum with (278.1 γ , 377.2 γ) (1982Lo01) was not seen in ²⁰⁸ Pb(⁷ Li.3n γ) (1999Ba30).
69.9	3.7	275.5	5-	205.6 3-			
105.1	2.9	328.1	8-	222.9 (9 ⁻)	(D+Q)		Mult.: $\gamma(\theta)$ rules out $\Delta J=0,2$ Q and $\Delta J=1$ pure D. A ₂ =0.10 3, A ₄ \approx 0.
160.4	100	160.4	2-	0.0 1-	(M1) [‡]	3.15	α (K)=2.55 4; α (L)=0.457 7; α (M)=0.1081 16; α (N)=0.0280 4; α (O)=0.00600 9 α (P)=0.000828 12
							E_{γ} : excit shows that this γ feeds the ground state.
							A ₂ =-0.06 I A ₄ =-0.01 2
183.8	7.9	885.5	11+	701.6 10-	(E1)	0.1032	$\alpha(K)=0.0828 \ I2; \ \alpha(L)=0.01551 \ 22; \ \alpha(M)=0.00368 \ 6; \\ \alpha(N)=0.000942 \ I4; \ \alpha(O)=0.000195 \ 3 \\ \alpha(P)=2.45 \times 10^{-5} \ 4$
							Mult.: α (L)exp \approx 0.03; $\gamma(\theta)$ rules out $\Delta J=2$ Q and $\Delta J=0$

²⁰⁹Bi(α ,n γ) **1982Lo01** (continued)

$\gamma(^{212}\text{At})$ (continued)

Eγ	I_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Mult.	α	Comments	
196.9 239.6	<30 ≤10.6	1117.7 1082.6	(5) (6 ⁻)	920.8 843.0	4 ⁻ 7 ⁻			D,Q transitions, A ₄ =0.13 5 indicates ΔJ =1 D+Q transition. A ₂ =-0.11 3, A ₄ =0.123 5. I _y : contaminated line. A ₂ =0.11 2, A ₄ =-0.09 3. Mult.: $\gamma(\theta)$ rules out ΔJ =1 pure D and ΔJ =0,1	
X251.0	2.0							pure Q. A ₂ =0.18 5, A ₄ =-0.04 9.	
278.1	4.6	1540.8	13-	1262.7	12+			Mult.: $\alpha(K)\exp=0.13 \ 6$; $\gamma(\theta)$ rules out $\Delta J=1,2 \ Q$, $\Delta J=0 \ D$ transitions. $A_2=-0.25 \ 9$, $A_4=-0.3 \ 2$. Mult.: 1982Lo01 assign E1, however, $\alpha(K)$ is more	
290.7	9.0	345.7	1-	55.0	0-	(M1(+E2))	0.37 23	consistent with M1. Mult.: from α (K)exp=0.60 <i>15</i> ; $\gamma(\theta)$ shows $\Delta J=1$ with A ₄ =0.09 <i>2</i> suggesting Q admixture. A ₂ =-0.10 <i>2</i> , A ₄ =0.09 <i>2</i> .	
^x 300.0	≈1 2 0	262 7	2-	55.0	0-	$(\mathbf{M1} + \mathbf{E2})$	0.21.20	Mult: from $\alpha(K) \propto n - 0.24$ 15	
363.6	5.9 14.5	363.7 363.7	2-	0.0	1-	(M1+E2) (M1)	0.3120	Mult.: Itom $\alpha(\mathbf{K}) \exp[=0.54 \ I5.]$ $\alpha(\mathbf{K}) = 0.265 \ 4; \ \alpha(\mathbf{L}) = 0.0466 \ 7; \ \alpha(\mathbf{M}) = 0.01102 \ I6;$ $\alpha(\mathbf{N}) = 0.00285 \ 4; \ \alpha(\mathbf{O}) = 0.000611 \ 9$ $\alpha(\mathbf{P}) = 8.44 \times 10^{-5} \ I2$ Mult.: $\alpha(\mathbf{K}) \exp[=0.35 \ 5 \text{ suggests M1}; \ \gamma(\theta) \text{ rules out}$ $\Delta J = 2 \ \mathbf{Q} \text{ or } \Delta J = 0 \ \mathbf{D} \text{ transitions.}$ $\Delta \alpha = -0.04 \ 4 \ \Delta q = 0.04 \ 6$	
366.6	5.5	1209.6	(6 ⁻)	843.0	7-	(M1+E2)	0.20 <i>13</i>	$\alpha(\text{K})=0.054, \Lambda_4=0.040, \Omega; \alpha(\text{K})=0.0083 25; \alpha(\text{K})=0.00215 64; \alpha(\text{O})=4.5\times10^{-4} 15 \alpha(\text{P})=5.9\times10^{-5} 24$ Mult.: $\alpha(\text{K})$ exp=0.26 4. $\Delta_2=0.09 11 \Delta_4=0.22$	
377.2	5.7	1262.7	12+	885.5	11+	(M1)	0.295	α(K) = 0.240 4; α(L) = 0.0422 6; α(M) = 0.00997 14;	
397.6	5.0	1283.1	12+	885.5	11+	(M1)	0.256	A ₂ =-0.04 2, A ₄ =-0.2 3. $\alpha(K)=0.208$ 3; $\alpha(L)=0.0365$ 6; $\alpha(M)=0.00863$ 12; $\alpha(N)=0.00224$ 4; $\alpha(O)=0.000479$ 7 $\alpha(P)=6.62\times10^{-5}$ 10 Mult.: $\alpha(K)\exp=0.24$ 4; $\gamma(\theta)$ rules out $\Delta J=2$ Q and $\Delta J=0$ D transitions.	
419.8	4.5	783.5	(3 ⁻)	363.7	2-	(M1)	0.221	A ₂ =-0.29 <i>I</i> 5, A ₄ =0.3 2. $\alpha(K)$ =0.180 3; $\alpha(L)$ =0.0315 5; $\alpha(M)$ =0.00745 <i>II</i> ; $\alpha(N)$ =0.00193 3; $\alpha(O)$ =0.000413 6 $\alpha(P)$ =5.71×10 ⁻⁵ 8 Mult.: $\alpha(K)$ exp=0.26 7; $\gamma(\theta)$ rules out ΔJ=2 Q or ΔJ =0 D transition.	
435.6	4.4	1321.1	(11+)	885.5	11+	(M1)	0.200	A ₂ =-0.1 2, A ₄ =0.2 3. $\alpha(K)=0.1628 23; \alpha(L)=0.0285 4; \alpha(M)=0.00674 10; \alpha(N)=0.001745 25; \alpha(O)=0.000374 6$ $\alpha(P)=5.17\times10^{-5} 8$ Mult.: from $\alpha(K)\exp=0.20 5$. A ₂ =0.4 4, A ₄ =-0.2 5.	
^44 ^{2.0} 478.6	2 20.7	701.6	10-	222.9	(9 ⁻)	[M1] [#]	0.1556	$\alpha(K)=0.1266\ 18;\ \alpha(L)=0.0221\ 3;\ \alpha(M)=0.00523\ 8;$ $\alpha(N)=0.001353\ 19;\ \alpha(O)=0.000290\ 4$ $\alpha(P)=4.01\times10^{-5}\ 6$	
Continued on next page (footnotes at end of table)									

²⁰⁹Bi(α ,n γ) 1982Lo01 (continued)

γ ⁽²¹²At) (continued)</sup>

Eγ	I_{γ}^{\dagger}	E _i (level)	J_i^π	E_f	\mathbf{J}_{f}^{π}	Mult.	α	Comments
514.8	19	843.0	7-	328.1	8-	(M1)	0.1281	Mult.: although the transition is assumed to be M1, $A_4=0.20 \ 4 \text{ in } \gamma(\theta)$ suggests some E2 admixture. $A_2=0.13 \ 3, A_4=0.20 \ 4.$ $\alpha(K)=0.1043 \ 15; \ \alpha(L)=0.0182 \ 3; \ \alpha(M)=0.00430 \ 6;$ $\alpha(N)=0.001112 \ 16; \ \alpha(O)=0.000238 \ 4$ $\alpha(P)=3.29\times10^{-5} \ 5$ Mult.: $\alpha(K)\exp\approx0.12; \ \gamma(\theta)$ rules out $\Delta J=2 \ O$ and
526.7	7.0	890.4	3-	363.7	2-	(M1)	0.1206	$\Delta J=0 \text{ D transitions.}$ $A_2=-0.18 \text{ 8.}$ $\alpha(K)=0.0981 \text{ 14; } \alpha(L)=0.01712 \text{ 24; } \alpha(M)=0.00404$ $6; \alpha(N)=0.001046 \text{ 15; } \alpha(O)=0.000224 \text{ 4}$ $\alpha(P)=3.10\times10^{-5} \text{ 5}$ $E_{\gamma}: E_{\gamma}=526.4 \text{ given in table 2 (1982Lo01) seems}$ to be a misprint. The value, 526.7 appears on
536.7	4.4	1457.5	(5+)	920.8	4-	(E1)	0.00920	level scheme (fig.7) and agrees with the deduced level energy. Mult.: $\alpha(K)exp=0.14$ 3 suggests M1; A ₄ =-0.23 14 in $\gamma(\theta)$ indicates Q admixture. A ₂ =-0.02 9, A ₄ =-0.23 14. $\alpha(K)=0.00757$ 11; $\alpha(L)=0.001249$ 18; $\alpha(M)=0.000293$ 4; $\alpha(N)=7.53\times10^{-5}$ 11 $\alpha(O)=1.593\times10^{-5}$ 23; $\alpha(P)=2.13\times10^{-6}$ 3
567.6	15.4	622.6	(1,2) ⁻	55.0	0-	(M1)	0.0989	Mult.: from $\alpha(K)\exp=0.017 5$; $\gamma(\theta)$ rules out $\Delta J=0,2 Q$ and $\Delta J=0 D$ transitions, $A_4=0.4 2$ suggests Q admixture. $A_2=-0.25 I4$, $A_4=0.4 2$. $\alpha(K)=0.0805 I2$; $\alpha(L)=0.01401 20$; $\alpha(M)=0.00331$ 5 ; $\alpha(N)=0.000856 I2$; $\alpha(O)=0.000183 3$ $\alpha(P)=2.54\times10^{-5} 4$ E : Ex=567 1 given in table 2 in 19821 c01 is
×570 3	19							possibly a misprint. The level scheme (fig. 7) gives 567.6 which fits the level energies. Mult.: $\alpha(K)\exp=0.090$ 15. $A_2=-0.01$ 8, $A_4=-0.05$ 13.
580.3 587.7	10.6 14.9	635.3 748.1	$(1,2)^-$ $(1,2,3,4)^-$	55.0 160.4	0^{-} 2 ⁻	(M1)	0.0902	α (K)exp ≥ 0.15 . α (K)=0.0735 <i>11</i> ; α (L)=0.01277 <i>18</i> ; α (M)=0.00301 <i>5</i> ; α (N)=0.000780 <i>11</i> α (O)=0.0001671 <i>24</i> ; α (P)=2.31×10 ⁻⁵ <i>4</i> Mult: α (K)exp=0.086 <i>15</i> .
608.6	9.1	769.0	(1,2,3,4) ⁻	160.4	2-	(M1)	0.0823	A ₂ =0.00 <i>10</i> , A ₄ =0.04 <i>15</i> . $\alpha(K)=0.0670$ <i>10</i> ; $\alpha(L)=0.01164$ <i>17</i> ; $\alpha(M)=0.00275$ <i>4</i> ; $\alpha(N)=0.000711$ <i>10</i> $\alpha(O)=0.0001523$ <i>22</i> ; $\alpha(P)=2.11\times10^{-5}$ <i>3</i> Mult.: $\alpha(K)\exp=0.080$ <i>10</i> .
618.8 620.0 650.1	@ @ 2.6	779.2 843.0 1933.2	(1,2,3,4) ⁻ 7 ⁻ 13 ⁺	160.4 222.9 1283.1	2 ⁻ (9 ⁻) 12 ⁺	@ @ (M1+E2)	0.044 26	A ₂ =0.07 8, A ₄ =0.10 13. $\alpha(K)=0.035 22; \ \alpha(L)=0.0067 \ 31; \ \alpha(M)=0.00161 \ 70; \ \alpha(N)=4.2\times10^{-4} \ 18; \ \alpha(O)=8.9\times10^{-5} \ 40 \ \alpha(P)=1.19\times10^{-5} \ 58 \ Mult.: \ \alpha(K)exp\approx0.06 \ suggests \ M1; \ \gamma(\theta) \ rules \ out \ pure \ D \ (A_4=0.26 \ 15), \ \Delta J=2 \ Q \ and \ \Delta J=0 \ D \ transitions.$ A ₂ =-0.14 9, A ₄ =0.26 15.

Continued on next page (footnotes at end of table)

209 Bi(α ,n γ) 1982Lo01 (continued) γ ⁽²¹²At) (continued) I_{γ} E_i (level) Mult. Comments Eγ α \mathbf{E}_{f} 16.9 885.5 11^{+} 222.9 (9^{-}) M2 0.1714 α(K)=0.1343 19; α(L)=0.0281 4; α(M)=0.00681 662.5 *10*; *α*(N)=0.001772 *25*; *α*(O)=0.000378 *6* $\alpha(P)=5.17\times10^{-5} 8$ Mult.: from $\alpha(K)$ exp=0.17 5 and $\gamma(\theta)$ (A₄ rules out $\Delta J=1$). $A_2=0.04 \ I, \ A_4=-0.05 \ 2.$ $\alpha(K)=0.032$ 20; $\alpha(L)=0.0061$ 28; $\alpha(M)=0.00146$ ^x675.0 15.3 (M1+E2) 0.040 23 63; α (N)=3.8×10⁻⁴ 17; α (O)=8.0×10⁻⁵ 36 $\alpha(P)=1.08\times10^{-5}$ 53 $\alpha(K)=0.031$ 19; $\alpha(L)=0.0060$ 27; $\alpha(M)=0.00143$ 679.6 11.6 840.0 $(1,2,3,4)^{-}$ 160.4 2-(M1+E2) 0.039 23 62; $\alpha(N)=3.7\times10^{-4}$ 16; $\alpha(O)=7.9\times10^{-5}$ 35 $\alpha(P)=1.06\times10^{-5}52$ Mult.: from $\alpha(K) \exp (0.068 \ 15; \gamma(\theta))$ rules out a pure Q or D transition. A₂=-0.30 10, A₄>0. 685.4 6.9 845.8 $(1,2,3,4)^{-}$ 160.4 2-(M1) 0.0602 $\alpha(K)=0.0491$ 7; $\alpha(L)=0.00849$ 12; $\alpha(M)=0.00200$ 3; $\alpha(N)=0.000518$ 8; $\alpha(O)=0.0001111$ 16 $\alpha(P)=1.537\times10^{-5}$ 22 Mult.: $\alpha(K) \exp (0.073 \ 10; \gamma(\theta))$ rules out $\Delta J = 2 Q$ and $\Delta J=0$ D transitions. $A_2 = -0.2 \ I, \ A_4 = -0.1 \ 3.$ 205.6 3α(K)=0.01134 16; α(L)=0.00287 4; 715.1 19.6 920.8 4^{-} (E2) 0.01515 $\alpha(M)=0.000708 \ 10; \ \alpha(N)=0.000183 \ 3;$ $\alpha(O) = 3.81 \times 10^{-5} 6$ $\alpha(P)=4.80\times10^{-6}$ 7 Mult.: from $\alpha(K) \exp[0.011 4; \gamma(\theta)]$ data suggest $\Delta J=2 Q \text{ or } \Delta J=1 D+Q \text{ transition.}$ $A_2 = -0.11 4, A_4 = -0.01 6.$ 728.2 1429.8 11^{-} 701.6 10-0.0514 $\alpha(K)=0.0419$ 6; $\alpha(L)=0.00724$ 11; 7.4 (M1) $\alpha(M)=0.001706\ 24;\ \alpha(N)=0.000442\ 7;$ $\alpha(O) = 9.46 \times 10^{-5}$ 14 $\alpha(P)=1.309\times10^{-5}$ 19 Mult.: from $\alpha(K)$ exp=0.061 15. $A_2 = -0.08 \ 10, \ A_4 = 0.08 \ 15.$ $\alpha(K)=0.01009 \ 15; \ \alpha(L)=0.00245 \ 4;$ 760.5 3 14.2 920.8 4^{-} 160.4 2-(E2) 0.01333 *α*(M)=0.000601 *9*; *α*(N)=0.0001553 22; $\alpha(O)=3.24\times10^{-5}$ 5 $\alpha(P)=4.11\times10^{-6}$ 6 Mult.: from $\alpha(K)$ exp=0.0086 20; $\gamma(\theta)$ rules out $\Delta J=0,1$ Q transition. A₂=0.21 10, A₄=0.04 15. 765.7 1651.2 13^{+} 885.5 11+ (E2) 0.01315 $\alpha(K)=0.00996 \ 14; \ \alpha(L)=0.00241 \ 4;$ 4.9 α (M)=0.000590 9; α (N)=0.0001525 22; $\alpha(O)=3.18\times10^{-5}$ 5 $\alpha(P)=4.05\times10^{-6}$ 6 Mult.: from $\alpha(K) \exp (0.012 5; \gamma(\theta))$ rules out $\Delta J=0,1$ Q and $\Delta J=1$ D transitions. A2=0.4 3, A4=0.2 5. $\alpha(K)=0.0141$ 74; $\alpha(L)=0.0026$ 12; 942.1 11.0 1827.6 12^{+} 885.5 11+ (M1+E2) 0.0175 88 $\alpha(M)=6.1\times10^{-4}\ 26;\ \alpha(N)=1.57\times10^{-4}\ 67;$ $\alpha(O)=3.4\times10^{-5}$ 15 $\alpha(P)=4.6\times10^{-6} 21$ Mult.: $\alpha(K)\exp\approx 0.02$ suggests M1+E2; $\gamma(\theta)$ rules out $\Delta J=2$ Q and $\Delta J=0$ D transitions. $A_2 = -0.3 2, A_4 = -0.3 3.$

Continued on next page (footnotes at end of table)

²⁰⁹Bi(α ,n γ) **1982Lo01** (continued)

$\gamma(^{212}\text{At})$ (continued)

[†] From singles spectrum at $E(\alpha)=20.6$ MeV; ΔI_{γ} not given.

[‡] From shell model the low-lying levels in ²¹²At are expected to have negative parity, therefore E1 transitions are not expected between these levels.

[#] This 478.6, 10⁻ to 9⁻ transition was assumed to be M1; its $\alpha(K)$ exp was used to normalize the ce-spectra to the γ -spectra in order to calculate the experimental conversion coefficients. The value of $\alpha(K)(478.6\gamma)$ used for normalization is not given.

^(a) $I\gamma(618.8\gamma+620.0\gamma)=15.5$. α and $\gamma(\theta)$ show that the $618.8\gamma + 620.0\gamma$ peak is a mixture of M1 and E2 multipolarities.

 $x \gamma$ ray not placed in level scheme.

 $^{212}_{85}{\rm At}_{127}$

²⁰⁹Bi(α,nγ) 1982Lo01

 $^{212}_{85}{\rm At}_{127}$