Adopted Levels, Gammas

	Histor	У		
Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	K. Auranen and E. A. Mccutchan	NDS 168, 117 (2020)	1-Aug-2020	

 $Q(\beta^{-}) = -4830\ 50;\ S(n) = 8000\ 70;\ S(p) = 8.4 \times 10^{2}\ 5;\ Q(\alpha) = 7520\ 50$ 2017Wa10

S(2n)=17660 80; S(2p)=3970 50; Q(*ε*p)=4130 50 (2017Wa10).

Assignment: ¹⁹⁷Au(²⁰Ne,5n), ²⁰³Tl(¹⁶O,7n) excit (1968Va04).

- 2014Ya19: the nuclei of interest were produced in a 40 Ca(193 MeV) + 175 Lu complete fusion reaction at the HIRFL-Lanzhou facility. The target was a 500- μ g/cm²-thick layer of natural Lu (>97.4% 175 Lu) evaporated on a 40 μ g/cm² carbon backing. The residues were selected using gas-filled recoil separator SHANS, and implanted into position sensitive silicon detectors. Time and position correlation were measured between evaporation residue implantation (ER) and the subsequent α -decay events. E α , half-lives, ER- α - α correlations were measured.
- 2015Ma63: the ²¹²Ac nuclei were produced using a fusion-evaporation reaction of ¹⁶²Dy(⁵⁴Cr,p3n)²¹²Ac. The 403– μ g/cm²-thick target was on 75– μ g/cm²-thick carbon backing and the ⁵⁴Cr beam energy, accelerated by the K500 superconducting cyclotron of Texas A&M, was reduced stepwise with aluminium degraders (E(⁵⁴Cr)=243, 248, 253 MeV). The residues were selected with the momentum achromat recoil spectrometer (MARS) and implanted into a position sensitive silicon detector. E α and σ (p2n)+ σ (p3n) were measured.

2017Gr18, 2016Fe11: the ²¹²Ac nuclei were produced using a fusion-evaporation reaction of ¹⁹⁷Au(²⁰Ne,5n)²¹²Ac at the Cyclotron Research Centre, Louvain-la-Neuve, Belgium. The $1-\mu$ m-thick target was placed on an angle of 20° with respect to the 145 MeV ²⁰Ne beam axis. Residues were extracted using Leuven Isotope Separator On-Line (LISOL). g factor, quadrupole moment, and spin of the ground state were measured through optical hyperfine spectra obtained using in-gas-cell laser ionization and spectroscopy (IGLIS) technique.

2018Ro14: mass measurement. Mass excess of 7304 keV 24 compared compared with 7277 keV 51 from AME-2016 (2017Wa10).

²¹²Ac Levels

Cross Reference (XREF) Flags

²¹⁶Pa α decay

E(level)	\mathbf{J}^{π}	T _{1/2}	XREF	Comments
0.0	(7 ⁺)	880 ms <i>35</i>	A	%α=95 calc; %ε+%β ⁺ =5 calc μ=4.98 28 (2017Gr18) %α,%ε+%β ⁺ : from theoretical partial β-decay half-life (2019Mo01). T _{1/2} : from 2014Ya19. Others: 930 ms 50 (1968Va04), 880 ms 110 (2000He17). J ^π : (7 ⁺) if observed α decay feeds the ²⁰⁸ Fr 7 ⁺ g.s. (HF≈1.9). J(²⁰⁸ Fr)=7 was determined in 2015Vo05 based on hyperfine spectrum measurement. J=(6) or (7) from a fit to the hyperfine spectrum in 2017Gr18. Configuration [(πh _{9/2})(νf _{5/2})] _{J=7} from g=0.711 39 (2017Gr18). μ: from g factor, measured with reference to g factor=0.920 13 for the 17/2 and 21/2 isomers in ²¹⁵ Ac, measured as 0.920 19 by 1983De08, and adjusted to 0.920 13 by 2017Gr18. Uncertainty in the g factor is quadratic addition of statistical uncertainty of 0.013, and systematic uncertainty of 0.037, as given by 2017Gr18. g=0.818 15 if g.s. J=6, uncertainty is statistical only.
133.6 3			Α	E(level): from $E\gamma$.
158 20			Α	E(level): from measured E α and Q(α)=8097 keV 15 (2017Wa10).

Adopted Levels, Gammas (continued)

$\gamma(^{212}Ac)$

E_i (level)	Eγ	$\mathbf{E}_f \mathbf{J}_f^{\pi}$		Comments
133.6	133.6 3	$0.0 \ (7^+)$	E _{γ} : from ²¹⁶ Pa α decay (2000He17).	

Adopted Levels, Gammas

Level Scheme

