Adopted Levels, Gammas

				History							
			Author	Citation	Literature Cutoff Date						
Full	Evaluation	T. D. Joh	nson, Y. J	. Chen, S. Enkhbold, G. Khalil, B. Yang	NDS 114, 661 (2013)	28-Feb-2013					
$Q(\beta^{-}) = -461$ S(2n)=15969	5 <i>14</i> ; S(n)= 22, S(2p)=	=7222 8; S(p) =6967 7 (201)=4072 <i>10</i> 2Wa38).	$Q; Q(\alpha) = 5965.4 \ 14 \ 2012 Wa38$							
²¹¹ Rn evalua	ited by T.D). Johnson, Y	.J. Chen,	S. Enkhbold, $\beta \gamma$. Khalil, B. Yang.							
				²¹¹ Rn Levels							
Configurati	on assignm	nents are fror	n 1993Da	10.							
				Cross Reference (XREF) Flags	5						
				A 211 Fr ε decay B 215 Ra α decay C 198 Pt(18 O,5n γ), 205 Tl(11 B,5r	ιγ)						
Theory, c Leve Yras α d Nucl B(E3 Magi	alculatic ls, confi t traps, ecay prob ear momer) systema cities:	ons, syster igurations high spin oabilities: nts: 1988 atics: 198 1983Ze02	natics: : 1993Da isomers : 1983Va Sa08, 19 85Be05	110, 1986Po01, 1985Po06, 1982By02 : 1988Sa08, 1986Po01, 1985Po06, 29, 1976Ra38 86Po01, 1986Be40, 1985Po06	, 1981Po08 1981Po08						
E(level)	$J^{\pi \dagger}$	T _{1/2} ‡	XREF		Comments						
0.0	1/2-	14.6 h 2	ABC	 %α=27.4 17; %ε=72.6 17 μ=+0.601 7 (1988Ki03,1989Ra17,2011StZZ) Evaluated nuclear rms charge radius <r<sup>2>^{1/2}=5.585 fm 18 (2008 update of 2004An14 work available on http://cdfe.sinp.msu.ru). See also 2009An12 for trends of nuclear radii.</r<sup> Configuration=((π h_{9/2})⁺⁴₀₊(ν p_{1/2})⁻¹). J^π: J=1/2 from hyperfine structure (1987Bo29); π=- from HF=1.8 2 for α branch to 1/2⁻²⁰⁷Po 68.573 level. T_{1/2}: from 1972As11. Others: 15.0 h 5 (1971Go35), 14.6 h 6 (1968Cr02). %α,%ε: calculated by evaluator from Iy in α and ε decays. Others: %α=26 1 (1971Go35), 28 3 (1955Mo68). 							
539.9 2	5/2-	≤4 ns	ABC	$\begin{array}{l} \text{Configuration} = ((\pi \ h_{9/2})_{0+}^{+4} (\nu \ f_{5/2})^{-1}). \end{array}$							
833.5 2	(3/2 ⁻)		В	J ^{**} : stretched E2 γ to 1/2 g.s. Configuration= $((\pi h_{9/2})^{+4}_{0+}(\nu p_{3/2})^{-1})$.							
1458.2 <i>3</i>	9/2-		A C Configuration= $((\pi h_{9/2})^{+4}_{4+}(\nu p_{1/2})^{-1})$.								
1577.8 2	13/2-		С	J ^{••} : stretched E2 γ to 5/2 level; no γ ray to g.s. Configuration= $((\pi \ h_{9/2})_{g+}^{+4}(\nu \ p_{1/2})^{-1})$.							
1577.8+x	(17/2 ⁻)	596 ns 28	G ns 28 C μ=+7.75 8 (1985Po06,1989Ra17,2011StZZ) Q=0.18 2 (1985Da14,1989Ra17,2011StZZ) Configuration=((π h _{9/2}) ⁺⁴ ₈₊ (ν p _{1/2}) ⁻¹). E(level): x <50; based on nonobservation of photons of an E2 transition to the								

Continued on next page (footnotes at end of table)

²¹¹Rn Levels (continued)

E(level)	$J^{\pi \dagger}$	T _{1/2} ‡	XREF	Comments
		<u> </u>		1577.8-keV level.
				J^{π} : T _{1/2} and $\gamma\gamma$ coin experiments (1981Po08) indicate a level with J>15/2. A
				17/2 ⁻ level is expected from shell-model calculation and analogy with ²¹² Rn
				(1993Da10).
				μ ,Q: TDPAD method (1985Po06,1985Da14). Other: μ =+7.72 4 (quoted by
1 (00.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	(15/0-)		-	1989Ra17 from thesis by A. Berger, HMI, Berlin (1987)).
1698.9+x? <i>3</i>	(15/2)		C	E(level): or 1993.2+x, if 415.4-120.8 cascade is reversed (1993Da10).
1720	(11/2-)			Configuration= $((\pi h_{9/2})_{8+}^{+}(\nu p_{1/2})^{-1})$ (?).
1/39	(11/2)		A	J ^{\sim} : analogy with ²⁰ At ε decay.
$2114.23 \pm v.16$	$(10/2^{-})$		A C	Configuration – $((\pi h_{\alpha})^{+4}(y f_{\alpha})^{-1})$
2114.55+X 10	(19/2)		C	I^{π} : no decay to levels below $17/2^{-}$ level: shell-model calc. (1993Da10)
2147 56+x 14	$(21/2^{-})$	<3.5 ns	C	Configuration= $((\pi h_{0,2})^{+4}(\gamma f_{5,2})^{-1})$
2117.501217	(21/2)	<u>_0.0 H5</u>	C	J^{π} : stretched E2 γ to $(17/2^{-})$ level.
2179?	$(9/2^+)$		Α	J^{π} : analogy with ²⁰⁹ At ε decay.
2650.3+x 2	$(23/2^+)$	6.7 ns <i>3</i>	С	J^{π} : shell model.
				Configuration= $((\pi h_{9/2})^{+3}(\pi i_{13/2})^{+1}_{11}(\nu p_{1/2})^{-1}).$
2722?	$(11/2^+)$		Α	J^{π} : analogy with ²⁰⁹ At ε decay.
2731.8+x 2	$(25/2^{-})$	<3 ns	С	Configuration= $((\pi h_{9/2})^{+4}_{12+}(\nu p_{1/2})^{-1}).$
				J^{π} : stretched E2 γ to $(21/2^{-})$ level.
3117.4+x 2	$(25/2^+)$		С	J^{π} : M1+E2 γ to (23/2 ⁺).
				Configuration= $((\pi h_{9/2})^{+3}(\pi i_{13/2})^{+1}_{11-}(\nu f_{5/2})^{-1}).$
3127.2+x 2	$(25/2^+)$		C	Configuration= $((\pi h_{9/2})^{+3}(\pi i_{13/2})^{+1}_{10^{-}}(\nu f_{5/2})^{-1})$ (?).
3216.4+x 2	$(25/2^{-})$		C	Configuration= $\pi(h_{9/2}^3 f_{7/2})_{12+} \nu p_{1/2}^{-1} + \pi(h_{9/2}^4)_{12+} \nu p_{1/2}^{-1}$.
3243.3+x 2	(29/2)	2.7 ns 6	C	J ^A : stretched E2 γ to (25/2) level.
2426.2	(07/0+)		~	Configuration= $((\pi \ h_{9/2})^{+3}(\pi \ t_{7/2})^{+1}_{14}(\nu \ p_{1/2})^{-1}).$
3426.3+x 2	$(21/2^+)$	-2	C	Configuration= $((\pi \ h_{9/2})^{-3}(\pi \ 1_{13/2})_{11-}^{-1}(\nu \ 1_{5/2})^{-1})$ (1993Da10).
$3044.3 \pm x 2$ $3873.9 \pm x 2$	(31/2)	<2 118	C	J . Stretched E1 γ to (29/2) level.
3926.0+x.3	$(35/2^+)$	40.2 ns 14	C	u = +17.80.21 (1985Po06 1989Ra17 2011StZZ)
5720.0 TX 5	(35/2)	10.2 115 1 1	C .	J^{π} : α , $T_{1/2}$ indicate an E2 γ to $(31/2^+)$ level: shell-model calculation.
				μ : TDPAD method (1985Po06). Other: +17.5 7 (quoted by 1989Ra17 from
				thesis by A. Berger, HMI, Berlin (1987)).
				Configuration= $((\pi h_{9/2})^{+3}(\pi i_{13/2})^{+1}_{17-}(\nu p_{1/2})^{-1}).$
4341.1+x? 3			С	E(level): or 4058.8+x, if 132.7-415.1 cascade is reversed.
4417.8+x 3			C	
4473.9+x 3	$(37/2^{+})$		C	Configuration= $((\pi h_{9/2})^{+3}(\pi 1_{13/2})^{+1}_{17-}(\nu t_{5/2})^{-1}).$
4509.8+x 3	$(37/2^{-1})$		C	J^{*} : (M1) γ to (35/2°) level.
4550 5±v 3			C	$\text{Configuration} = ((\pi \ \mathbf{n}_{9/2})^{-1} (\pi \ 1_{13/2})^{-1}_{16-} (\forall \ 1_{5/2})^{-1}).$
4920.8 + x 3	$(39/2^+)$		c c	I^{π} : M1 γ ray to $(37/2^+)$; crossover γ ray to $(35/2^+)$ levels
.)20.01A J	(37/2)			Configuration= $((\pi h_{0/2})^{+3}(\pi i_{1/2/2})^{+1}(\gamma f_{5/2})^{-1})$.
4961.0+x <i>3</i>	(37/2)		С	Configuration= $((\pi h_{0/2})^{+2}(\pi i_{1/2/2})^{+1}(\pi f_{7/2})^{+1}(\nu f_{5/2})^{-1})$ (?).
5160.2+x 4	(41/2)		c	Configuration= $((\pi h_{9/2})^{+2}(\pi i_{13/2})^{+1}(\pi f_{7/2})^{+1}(\nu f_{5/2})^{-1}).$
5239.9+x <i>3</i>	$(39/2^{-})$	≤7 ns	C	J^{π} : stretched E1 γ ray to $(37/2^+)$ level; shell-model calculation.
				Configuration= $((\pi h_{9/2})^{+2}(\pi i_{13/2})^{+2}_{10+}(\nu p_{1/2})^{-1}).$
5245.9+x <i>3</i>	$(41/2^{-})$	3.5 ns 14	С	J ^{π} : stretched E1 and E3 γ rays to (39/2 ⁻) and (35/2 ⁻) levels, respectively.
				Configuration= $((\pi h_{9/2})^{+2}(\pi i_{13/2})^{+2}_{20+}(\nu p_{1/2})^{-1}).$
5245.9+y	$(43/2^{-})$	14 ns 2	С	μ =+15.9 4 (1985Po06,1989Ra17,2011StZZ)
				J^{n} : deduced from $T_{1/2}$ and g-factor.
				μ : IDPAD method (1985P006).
				Configuration= $((\pi n_{9/2})^{-5}(\pi 1_{13/2})_{17-}^{-7}(\nu g_{9/2})^{-4}(\nu p_{1/2})_{0+}^{-5})$. See also
				F(level): g_{1} actor and $T_{1/2}$ suggest a core-excited $43/2^{-1}$ level which decays to
				the 5246+x, $41/2^{-1}$ level by an unobserved low-energy hindered M1 transition
				(1985Po06).
			Co	ontinued on next page (footnotes at end of table)

²¹¹Rn Levels (continued)

E(level)	Jπ†	T _{1/2} ‡	XREF	Comments
				Configuration= $((\pi h_{9/2})^{+3}(\pi i_{13/2})^{+1}_{17-}(\nu g_{9/2})^{+1}(\nu p_{1/2})^{-2}_{0+})$. See also 1986Po01 for detailed wave function.
				E(level): g-factor and $T_{1/2}$ suggest a core-excited $43/2^-$ level which decays to the 5246+x $41/2^-$ level by an unobserved low energy hindered M1 transition
				(1985Po06).
5733.8+y 2	$(45/2^{-})$		С	J^{π} : (M2) γ from (49/2 ⁺) level.
6100 1 2	$(40/2^{+})$	29.4 m = 1.4	c	Configuration= $((\pi h_{9/2})^{+3}(\pi i_{13/2})_{17}^{+1}(\nu i_{11/2})^{+1}(\nu p_{1/2})_{0+}^{-2})$.
0100.1+y 2	(49/2)	28.4 118 14	C	$\mu = +18.7720 (1983P000,1989Ra17,20115(ZZ))$ J ^{π} : stretched E3 γ to (43/2 ⁻) level.
				μ : TDPAD method (1985Po06).
(570.0	(40/0=)		6	Configuration= $\pi(h_{9/2}^3 i_{13/2})_{17-}\nu(j_{15/2} (p_{1/2}^{-2})_{0+}) + \pi(h_{9/2}^2 i_{13/2}^2)_{20+}\nu(g_{9/2} (p_{1/2}^{-2})_{0+}))$. See also 1986Po01 for detailed wave function.
6578.0+y 2 6713.9+y 2	(49/2) $(51/2^+)$		C	I^{π} · M2 γ ray from (55/2 ⁻) level
0/15.9 ry 2	(31/2)		C	Configuration= $((\pi h_{0/2})^{+2}(\pi i_{1/2/2})^{+2}_{+2}(y i_{1/2})^{+1}(y p_{1/2})^{-2}_{-2})$
7003.8+y 2	$(51/2^+)$		С	Configuration = $\pi(h_{0/2}^2 i_{13/2} f_{7/2})_{18-\nu(j_{15/2}} (p_{1/2}^{-2})_{0+})$ (?).
7398.9+y 2	(55/2-)	1.5 ns 4	С	J^{π} : stretched E3 γ ray to (49/2 ⁺) level.
				Configuration= $((\pi h_{9/2})^{+2}(\pi i_{13/2})^{+2}_{20+}(\nu j_{15/2})^{+1}(\nu p_{1/2})^{-2}_{0+})$ See also 1986Po01 for detailed wave function.
7593.9+y <i>3</i>	$(53/2^+)$		C	Configuration= $\pi (h_{9/2}^2 i_{13/2}^2)_{20+} v(i_{11/2} f_{5/2}^{-1} p_{1/2}^{-1})$ or
7630 3+v 3			c	configuration= $\pi(n_{9/2}^{-1}n_{3/2}^{-1})_{20+}(\nu(g_{9/2}^{-1}n_{5/2}^{-1}))$ (?).
8161.9+y <i>4</i>			c	
8167.5+y <i>3</i>	$(57/2^+)$	2.3 ns 2	С	J^{π} : stretched E1 γ ray to (55/2 ⁻) level.
				Configuration= $\pi(h_{9/2}^3 i_{13/2})_{17-}\nu(g_{9/2}i_{11/2} f_{5/2}^{-1}(p_{1/2}^{-2})_{0+})$. See also 1986Po01 for detailed wave function.
8304.3+y <i>3</i>	$(57/2^{-})$		C	J^{π} : (M1) γ to (55/2 ⁻) level.
				Configuration= $\pi(h_{3/2}^2 h_{3/2}^2)_{20+} \nu(j_{15/2} h_{5/2}^2 p_{1/2})$ or configuration= $\pi(h_{2}^2 h_{3/2}^2)_{20+} \nu(j_{15/2} h_{5/2}^2 p_{1/2}^2)$ (2)
8328.4+v 2	$(53/2^{-})$		с	Configuration= $\pi(f_{2/2}^{-1}f_{2/2}^{-1})_{20+}^{-1}\gamma_{20+}^{-1}$
5				configuration= $\pi(h_{0/2}^{2}i_{1/2}^{-1/2})_{20+}^{-1/2})(v(j_{15/2}f_{5/2}^{-1}p_{1/2}^{-2}))$ (?).
8611.2+y 4			С	7/2 15/2 5/2-1/2
8758.0+y 4	(62/2-)	$201 m_{\odot} 4$	C	u = 10.50.22 (1005D=06.1000D=17.2011C+77)
8854.5+y 4	(03/2)	201 ns 4	C	μ =+19.59 22 (1985P006,1989Ra17,2011StZZ) O=1 54 22 (1985Da14 1989Ra17 2011StZZ)
				J^{π} : stretched E3 γ ray to $(57/2^+)$ level.
				μ ,Q: TDPAD method (1985Po06,1985Da14).
				Configuration= $\pi(h_{9/2}^5 i_{13/2})_{17-}\nu(j_{15/2} i_{11/2} f_{5/2}^{-1}(p_{1/2}^{-2})_{0+}) + \pi(h_{9/2}^9 i_{13/2}^2)_{20+}\nu(g_{9/2} i_{11/2} f_{5/2}^{-1}(p_{1/2}^{-2})_{0+}).$ See also 1986Po01 for detailed wave function.
8925.8+y 4	((2))		C	
9147.1+y 4	(63/2 ⁻)		C	Configuration= $\pi(h_{9/2}^2 I_{13/2})_{17-}\nu(J_{15/2} I_{11/2} I_{5/2}^{-1}(p_{1/2}^{-2})_{0+}) + \pi(h_{9/2}^2 I_{13/2}^2)_{20+}\nu(g_{9/2} I_{11/2} I_{5/2}^{-1}(p_{1/2}^{-2})_{0+}).$ See also 1986Po01 for detailed wave function.
9627.6+y 4			С	
9915.4+y 4	$(69/2^+)$	9.0 ns 7	С	Configuration= $\pi(h_{9/2}^2 i_{13/2}^2)_{20+} \nu(j_{15/2} i_{11/2} f_{5/2}^{-1} (p_{1/2}^{-2})_{0+}).$
9918.1+y 4	$(65/2^+)$		С	Configuration= $\pi(h_{9/2}^{2'-i}i_{13/2}^{2'-i})_{20+}\nu(j_{15/2}i_{11/2}f_{5/2}^{2'}f(p_{1/2}^{-2'})_{0+}).$
10814.3+y 5	$(69/2^+)$		C	Configuration= $\pi(h_{9/2}^2 i_{13/2}^2)_{20+} \nu(j_{15/2} i_{11/2} f_{5/2}^{-1}(p_{1/2}^{-2})_{0+}).$
11034.5+y 5	(71/2)		С	Configuration= $\pi(h_{9/2}^2i_{13/2}^2)_{20+} + \nu(j_{15/2}i_{11/2}f_{5/2}^{-1}p_{1/2}^{-2})$ or $\nu(j_{15/2}^2f_{5/2}^{-1}p_{1/2}^{-2})$ or $\nu(j_{15/2}i_{11/2}f_{5/2}^{-2}p_{1/2}^{-1})$.
11081.8+y 5	(71/2)		С	Configuration= $\pi(h_{9/2}^2i_{13/2}^2)_{20+} + \nu(j_{15/2}i_{11/2}f_{5/2}^{-1}p_{1/2}^{-2})$ or $\nu(j_{15/2}^2f_{5/2}^{-1}p_{1/2}^{-2})$ or $\nu(j_{15/2}i_{11/2}f_{5/2}^{-2}p_{1/2}^{-1})$.
11232.0+y 5	(73/2)		С	Configuration = $\pi(h_{9/2}^2 i_{13/2}^2)_{20+} \nu(j_{15/2} i_{11/2} f^{-2})_{5/2} (p_{1/2}^{-1}).$

Continued on next page (footnotes at end of table)

²¹¹Rn Levels (continued)

[†] In addition to the specific arguments given for each assignment, the sequence of increasing spins has been established in ¹⁹⁸Pt(¹⁸O,5n γ), ²⁰⁵Tl(¹¹B,5n γ) experiments with excitation function measurements. Assignments for high-spin levels (J>21/2) are from 1993Da10, based on ce data, $\gamma(\theta)$ and the increasing spin sequence with excitation energy. Configurations given are from 1993Da10 and 1981Po08 in ¹⁹⁸Pt(¹⁸O,5n γ) and ²⁰⁵Tl(¹¹B,5n γ). [‡] From γ (t) data in ¹⁹⁸Pt(¹⁸O,5n γ), ²⁰⁵Tl(¹¹B,5n γ) for all excited states.

Adopted Levels, Gammas (continued)										
$\gamma(^{211}\text{Rn})$										
E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	δ^{\ddagger}	$lpha^{\dagger}$	$I_{(\gamma+ce)}$	Comments
539.9	5/2-	539.9 2	100	0.0	$1/2^{-}$	E2		0.0294		B(E2)(W.u.)>0.040
833.5	$(3/2^{-})$	833.5 2		0.0	$1/2^{-}$					
1458.2	9/2-	918.3 2	100	539.9	5/2-	E2		0.00959		
1577.8	$13/2^{-}$	119.6 2	100	1458.2	9/2-	E2		3.88		
1577.8+x	$(17/2^{-})$	(x)		1577.8	$13/2^{-}$					E_{γ} : x <50 (1981Po08).
1698.9+x?	$(15/2^{-})$	120.8 5	100	1577.8+x	$(17/2^{-})$					
1739	$(11/2^{-})$	281	100	1458.2	9/2-					
1960?		221	100	1739	$(11/2^{-})$					
2114.33+x	$(19/2^{-})$	415.4 5	3.8 19	1698.9+x?	$(15/2^{-})$					
		536.3 2	100.0 25	1577.8+x	$(17/2^{-})$	(M1+E2)	2.46 15	0.0433 17		
2147.56+x	$(21/2^{-})$	(33.2)		2114.33+x	$(19/2^{-})$	[M1]		65 2	19 4	
		569.9 2	100.0 13	1577.8+x	$(17/2^{-})$	E2		0.0260		B(E2)(W.u.)>0.030
2179?	$(9/2^+)$	440	100	1739	$(11/2^{-})$					7
2650.3+x	$(23/2^+)$	502.7 2	100 6	2147.56+x	$(21/2^{-})$	E1		0.01089		$B(E1)(W.u.)=2.15\times10^{-7} 21$
		1072.6 5	3.0 11	1577.8+x	$(17/2^{-})$	[E3]		0.01650		B(E3)(W.u.)=1.25
2722?	$(11/2^+)$	763	25 5	1960?						
0501.0	(05/0-)	983	100 15	1739	$(11/2^{-})$			0.0016		
2/31.8+x	(25/2)	584.2 2	100	2147.56+x	(21/2)	(E2)		0.0246		B(E2)(W.u.) > 0.036
311/.4+x	$(25/2^+)$	467.02	100	2650.3+x	$(23/2^+)$	MI		0.180 3		
3127.2+X	$(25/2^{+})$	979.5 2	100	2147.56+X	(21/2)	50		0.00715		
3216.4+X	(25/2)	1068.9 2	100	2147.50+X	(21/2)	E2		0.00/15	503	$\mathbf{D}(\mathbf{E}\mathbf{O})(\mathbf{W}) \rightarrow 10(\mathbf{C})$
3243.3+x	(29/2)	(26.9)		3216.4+x	(25/2)	[E2]		4.56×10 ⁵	5.03	B(E2)(W.u.)=1.90
		(110.1)		5127.2+X	(23/2*)	(1012)		00.0	1.8 5	exceeds RUL value of 1.0 by 2 to 3 sigma.
		511.5 2	100.0 14	2731.8+x	$(25/2^{-})$	E2		0.0333		B(E2)(W.u.)=0.073 17
3426.3+x	$(27/2^+)$	308.9 5	64 18	3117.4+x	$(25/2^+)$	M1		0.551		
		776.1 2	100 9	2650.3+x	$(23/2^+)$	(E2)		0.01342		
3844.3+x	$(31/2^+)$	418.0 2	2.7 5	3426.3+x	$(27/2^+)$	[E2]		0.0548		B(E2)(W.u.)>0.0077
		601.0 <i>I</i>	100.0 13	3243.3+x	$(29/2^{-})$	E1		0.00761		$B(E1)(W.u.)>4.2\times10^{-7}$
3873.9+x		630.6 2	100	3243.3+x	$(29/2^{-})$					
3926.0+x	$(35/2^+)$	(52.1)		3873.9+x					≤70	
		81.7 2	100 15	3844.3+x	$(31/2^+)$	E2		20.9 4		B(E2)(W.u.)=2.3 5
4341.1+x?		415.1 2	100	3926.0+x	$(35/2^+)$					
4417.8+x		492.0 5	100	3926.0+x	$(35/2^+)$					
4473.9+x	$(37/2^+)$	132.7 5	15 4	4341.1+x?						
		548.0 2	100 21	3926.0+x	$(35/2^+)$	M1		0.1175		
4509.8+x	$(37/2^+)$	(92.0)		4417.8+x					≤2.4	
		583.7 2	100	3926.0+x	$(35/2^+)$	(M1)		0.0994		
4550.5+x		132.8 5	18 8	4417.8+x	(a = (a ±)					
4020.0	(20/2+)	624.7 5	100 25	3926.0+x	$(35/2^{+})$	1.01		0.254		
4920.8+x	(39/2+)	411.1 2	100 29	4509.8+x	$(37/2^{+})$	MI (F2)		0.254		
		994.7 2	23.6 7	3926.0+x	$(35/2^{+})$	(E2)		0.00821		

From ENSDF

²¹¹₈₆Rn₁₂₅-5

I

$\gamma(^{211}$ Rn) (continued)

E _i (level)	\mathbf{J}_i^π	E_{γ}	Iγ	E_f	J_f^π	Mult. [‡]	δ^{\ddagger}	α^{\dagger}	$I_{(\gamma+ce)}$	Comments
4961.0+x	(37/2)	410.7 2	100 20	4550.5+x						
		1034.9 5	50 <i>5</i>	3926.0+x	$(35/2^+)$	(D)				
5160.2+x	(41/2)	239.4 2	100	4920.8+x	$(39/2^+)$	D				
5239.9+x	$(39/2^{-})$	278.9 5	8.3 17	4961.0+x	(37/2)	D				
		730.0 2	100.0 17	4509.8+x	$(37/2^+)$	E1		0.00524		$B(E1)(W.u.) > 6.5 \times 10^{-8}$
5245.9+x	$(41/2^{-})$	(6.0 4)		5239.9+x	$(39/2^{-})$	[M1]		$2.5 \times 10^3 6$	55 14	
		325.2 2	86 8	4920.8+x	$(39/2^+)$	E1		0.0277		$B(E1)(W.u.) = 5.5 \times 10^{-7} 23$
		772.1 2	4.3 16	4473.9+x	$(37/2^+)$	[M2]		0.1190		B(M2)(W.u.)=0.016 9
		1319.9 2	100.0 8	3926.0+x	$(35/2^+)$	E3		0.01049		B(E3)(W.u.) = 8 3
5245.9+y	$(43/2^{-})$	(y)		5245.9+x	$(41/2^{-})$					
5733.8+y	$(45/2^{-})$	487.8 2	100	5245.9+y	$(43/2^{-})$	M1		0.1602		
6100.1+y	$(49/2^+)$	366.3 2	6.1 7	5733.8+y	$(45/2^{-})$	M2		1.121		B(M2)(W.u.)=0.25 4
-		854.3 2	100.0 16	5245.9+y	$(43/2^{-})$	E3		0.0280		B(E3)(W.u.)=42.1 24
6578.0+y	$(49/2^{-})$	478.0 2	100	6100.1+y	$(49/2^+)$	(D+Q)				
6713.9+y	$(51/2^+)$	136.1 2	21 7	6578.0+y	$(49/2^{-})$	E1		0.220		
		613.7 2	100.0 14	6100.1+y	$(49/2^+)$	M1		0.0871		
7003.8+y	$(51/2^+)$	903.7 2	100	6100.1+y	$(49/2^+)$	M1		0.0316		
7398.9+y	$(55/2^{-})$	685.2 2	18.6 9	6713.9+y	$(51/2^+)$	M2		0.1672		B(M2)(W.u.)=0.59 16
		1298.6 2	100.0 9	6100.1+y	$(49/2^+)$	E3		0.01086		B(E3)(W.u.)=40 11
7593.9+y	$(53/2^+)$	880.0 2	100	6713.9+y	$(51/2^+)$	M1		0.0338		
7630.3+y		916.3 2	100	6713.9+y	$(51/2^+)$					
8161.9+y		531.6 5	100	7630.3+y						
8167.5+y	$(57/2^+)$	537.1 2	6.9 19	7630.3+y						
		768.7 2	100.0 19	7398.9+y	$(55/2^{-})$	E1		0.00476		$B(E1)(W.u.)=1.70\times10^{-7}$ 16
8304.3+y	$(57/2^{-})$	905.4 2	100	7398.9+y	$(55/2^{-})$	M1		0.0314		
8328.4+y	$(53/2^{-})$	929.4 2	100 4	7398.9+y	$(55/2^{-})$	M1		0.0294		
		1324.6 2	52 8	7003.8+y	$(51/2^+)$	(D)				
8611.2+y		282.9 5	100	8328.4+y	$(53/2^{-})$	D				
8758.0+y		146.8 5	100	8611.2+y		E1		0.183		
8854.5+y	$(63/2^{-})$	687.0 2	100	8167.5+y	$(57/2^+)$	E3		0.0488		B(E3)(W.u.)=30.2 6
8925.8+y		758.3 <i>5</i>	100	8167.5+y	$(57/2^+)$					
9147.1+y	$(63/2^{-})$	292.6 5	100	8854.5+y	$(63/2^{-})$	(M1)		0.640		
9627.6+y		773.1 7	100	8854.5+y	$(63/2^{-})$					
9915.4+y	$(69/2^+)$	1060.9 2	100	8854.5+y	$(63/2^{-})$	E3		0.01691		B(E3)(W.u.)=33 3
9918.1+y	$(65/2^+)$	1063.6 2	100	8854.5+y	$(63/2^{-})$	E1(+M2)	0.23 1			
10814.3+y	$(69/2^+)$	896.2 5	100	9918.1+y	$(65/2^+)$	(E2)		0.01006		
11034.5+y	(71/2)	220.2 5	100	10814.3+y	$(69/2^+)$					
11081.8+y	(71/2)	1166.4 5	100	9915.4+y	$(69/2^+)$					
11232.0+y	(73/2)	150.2 5	100	11081.8+y	(71/2)					

[†] Additional information 1. [‡] From angular distributions and ce data in 198 Pt(18 O,5n γ), 205 Tl(11 B,5n γ).

²¹¹₈₆Rn₁₂₅-6

Adopted Levels, Gammas

Level Scheme

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

Legend

 $^{211}_{86}$ Rn₁₂₅

Adopted Levels, Gammas

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $---- \rightarrow \gamma$ Decay (Uncertain)

 $^{211}_{86}$ Rn₁₂₅