²¹⁵Th α decay 2005Ku31,2000He17,1968Va18

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	D. Abriola, P. Demetriou, M. Hassanvand, M. Hussain	NDS 114, 661 (2013)	28-Feb-2013

Parent: ²¹⁵Th: E=0.0; $J^{\pi}=(1/2^{-})$; $T_{1/2}=1.2$ s 2; $Q(\alpha)=7665$ 4; % α decay=100.0

²¹⁵Th-Q(α): From 2012Wa38. From average E α of α feeding g.s. of ²¹¹Ra evaluators obtain the same value.

²¹⁵Th- $\%\alpha$ decay: $\%\alpha$ =100 from Adopted Levels of ²¹⁵Th in ENSDF database.

2005Ku31: ²¹⁵Th recoils from the ¹⁷⁰Er(⁵⁰Ti,5n) reaction were separated from the beam using a velocity filter SHIP at GSI and implanted into a position-sensitive 16-strip PIPS semiconductor detector. Measured (recoil)- γ - α - γ coincidences-correlations and γ -rays. Ge-Clover detector was used for γ measurements. Measured E α , E γ , I γ .

2000He17: ²¹⁵Th recoils from the ¹⁷⁰Er(⁵¹V,p5n) reaction were separated from the beam using a velocity filter and implanted into a position-sensitive semiconductor detector. Measured $E\alpha$, $E\gamma$, α - γ coin. Detector: Ge for γ rays.

1973Mi03: ²¹⁵Th recoils from the ¹⁸²W(³⁵Cl,pn) reaction were separated with the JAERI recoil separator and implanted into a PSSD. Measured $E\alpha$, $T_{1/2}$.

1968Va18: Activity produced by 206 Pb(16 O,7n). Measured E α , I α . Semiconductor detector.

²¹¹Ra Levels

E(level) [†]	$J^{\pi \dagger}$	$T_{1/2}^{\dagger}$
0.0	5/2 ⁽⁻⁾	13 s 2
133.86 10	$(1/2^{-})$	
194.54 <i>13</i>	$(3/2^{-})$	
295.1 3	$(3/2^{-})$	

[†] From Adopted Levels.

α radiations

$\mathrm{E}\alpha^{\dagger}$	E(level)	$\mathrm{I}\alpha^{\ddagger @}$	HF [#]	Comments
7236 7	295.1	1.0 4	28 13	α decay measured only by 2005Ku31.
7334 4	194.54	7.9 30	84	2005Ku31 were unable to measure I α but determined that I α >6.
7392 <i>3</i>	133.86	51.5 30	1.9 4	2005Ku31 were unable to measure I α but determined that I α >41.
7522 4	0.0	39.6 30	7.1 14	$E\alpha$: weighted average of values from 1968Va18, 1997Mi03, 2000He17, and 2005Ku31.
				2005 Ku31 were unable to measure I α but determined that I α < 52.

[†] From weighted average of values from 2005Ku31, 2000He17, 1968Va18, unless otherwise stated.

[‡] From 1968Va18, unless otherwise stated. [#] Using $r_0(^{211}Ra)=1.479 \ 11$; interpolated value deduced from $r_0(^{212}Ra)=1.466 \ 6$ and $r_0(^{210}Ra)=1.492 \ 16 \ (1998Ak04)$.

[@] Absolute intensity per 100 decays.

$\gamma(^{211}\text{Ra})$

 $\alpha(\exp)$: determined from ratio of observed $\alpha - \gamma$ coincidences and calculated ones for a given α line (2005Ku31).

E_{γ}^{\dagger}	$I_{\gamma}^{\#}$	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. [‡]	α [@]	$I_{(\gamma+ce)}^{\#}$	Comments
60.9 3	1.5 4	194.54	(3/2-)	133.86	(1/2 ⁻)	(M1,E2)	57 44	87 23	$\begin{aligned} &\alpha(L)=47 \ 37; \ \alpha(M)=11 \ 9; \ \alpha(N)=3.0 \ 24; \\ &\alpha(O)=0.6 \ 5; \ \alpha(P)=0.09 \ 7; \ \alpha(Q)=0.0012 \ 8; \\ &\alpha(N+)=4 \ 3 \\ &\gamma \ observed \ only \ by \ 2005Ku31. \\ &I_{\gamma}: \ from \ I\gamma(60.9)/I\gamma(194.5)=11 \ 4/100 \ 6. \end{aligned}$

			²¹⁵ T	h α decay	2005Ku31,2000He17,1968Va		17,1968Va	18 (continued)
					$\gamma(^{211}\text{Ra})$ (continued)			
E_{γ}^{\dagger}	$I_{\gamma}^{\#}$	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. [‡]	α [@]	$I_{(\gamma+ce)}$ #	Comments
133.88 10	100 3	133.86	(1/2 ⁻)	0.0 5/2 ⁽⁻⁾	E2	2.78	378 11	$\alpha(\exp)=2.5 5$ $\alpha(K)=0.296 5; \ \alpha(L)=1.82 3; \ \alpha(M)=0.496$ $8; \ \alpha(N)=0.1310 \ 19; \ \alpha(O)=0.0279 \ 4; \ \alpha(P)=0.00407 \ 6$ $\alpha(Q)=2.20\times10^{-5} \ 4; \ \alpha(N+)=0.1630 \ 24$ I(K X ray)=77 7 relative to Iy(133.9)=100
194.49 <i>14</i>	14 2	194.54	(3/2 ⁻)	0.0 5/2 ⁽⁻⁾	M1	2.37	47 7	$\alpha(\exp)=3.8 \ 17$ $\alpha(K)=1.90 \ 3; \ \alpha(L)=0.352 \ 5; \ \alpha(M)=0.0840$ $12; \ \alpha(N)=0.0222 \ 4; \ \alpha(O)=0.00506 \ 8$ $\alpha(P)=0.000881 \ 13; \ \alpha(Q)=6.91\times10^{-5} \ 10;$ $\alpha(N+)=0.0282 \ 4$
295.1 <i>3</i>	1.2 4	295.1	(3/2 ⁻)	0.0 5/2 ⁽⁻⁾	(M1)	0.742	2.1 7	$\alpha(\exp)=1.0.5$ $\alpha(K)=0.597.9; \alpha(L)=0.1096.16; \alpha(M)=0.0262.4; \alpha(N)=0.00690.10; \alpha(O)=0.001574.23$ $\alpha(P)=0.000275.4; \alpha(Q)=2.15\times10^{-5}.3; \alpha(N+)=0.00877.13$ γ observed only by 2005Ku31. Mult.: from comparison of $\alpha(\exp)$ with $\alpha(M1, \text{theory})=0.742$ and $\alpha^{E3}(\text{theo})=1.1$, M1 and E3 are possible; Weisskopf half-life estimates for M1 $T_{1/2}=8.57\times10^{-7} \ \mu\text{s} \ 7$ and E3 $T_{1/2}=2.36$ ms 4 rule out E3 since γ ray is observed to be prompt according to 2005Ku31.

 † From weighted average of values from 2005Ku31 and 2000He17, unless otherwise stated.

[‡] From comparison of $\alpha(\exp)$ and α from BrIcc. [#] For absolute intensity per 100 decays, multiply by 0.1404.

[@] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

²¹⁵Th α decay 2005Ku31,2000He17,1968Va18

Decay Scheme

 $I_{\gamma} < 2\% \times I_{\gamma}^{max}$
 $I_{\gamma} < 10\% \times I_{\gamma}^{max}$
 $I_{\gamma} > 10\% \times I_{\gamma}^{max}$

Legend

²¹¹₈₈Ra₁₂₃