²¹¹Po IT decay (25.3 s) 1998Mc03

History

Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	J. K. Tuli, P. Blokhin, J. Kaur, J. Y. Lee and N. Sharma	NDS 114, 661 (2013)	28-Feb-2013	

Parent: ²¹¹Po: E=1462 5; $J^{\pi}=(25/2^+)$; $T_{1/2}=25.3$ s 4; %IT decay=0.016 4 Isomer seen in ²⁰⁸Pb(⁹Be, α 2n γ). Measured prompt and delayed γ , $\gamma\gamma(t)$, deduced isomer half-life.

²¹¹Po Levels

E(level)	$J^{\pi \dagger}$	T _{1/2} †	Comments
0.0	$9/2^+$ 11/2 ⁺	0.516 s <i>3</i>	
1064.8 4	$15/2^{-}$	14.0 ns 2	
1427.87	(17/2) $(25/2^+)$	25.3 s 4	%α=99.984 4; %IT=0.016 4
			E(level): from $\Delta Q(\alpha)$ of the α groups from ²¹¹ Po(1462 level) and ²¹¹ Po(g.s.) to ²⁰⁷ Pb g.s. J^{π} : shell model: $T_{1/2}$ and branching ratio indicate that the unobserved 34-keV isomeric
			transition to $(17/2^+)$ level is probably an E4 or M4.
			$T_{1/2}$: weighted average of 24.2 s 5 (19/4Ba29), 25.5 s 3 (1962Pe15). 28 s 1 (1982Bo04), 25 s 2 (1962Ka15), 25 s (1954Sp32), 24.9 s 14 (1998Mc03).
			$\%\alpha$,%IT: measured I α (7449.3) from ²¹¹ Po g.s. decaying with T _{1/2} =25.2 s (1989Ku08).

[†] From Adopted Levels.

						²¹¹ Po IT decay (25.3 s) 1998Mc03 (continued)		(continued)		
								γ ⁽²¹¹ Po)		
Eγ	Ιγ #&	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Mult. [‡]	δ^{\ddagger}	α^{\dagger}	Ι _(γ+ce) @&	Comments
(34 5)		1462	(25/2+)	1427.8	(17/2 ⁺)	(E4)		6.5×10 ⁶ 50	100	E_{γ} : γ not observed, deduced from level scheme (1989Ku08). Mult.: Weisskopf estimates suggest E4 or M4: ΔJ^{π}
363.0 5	98.0	1427.8	(17/2+)	1064.8	15/2-	(E1)		0.0204	100	from shell model prediction suggests E4. $\alpha(K)=0.01668\ 24;\ \alpha(L)=0.00283\ 4;\ \alpha(M)=0.000664\ 10$ $\alpha(N)=0.0001697\ 25;\ \alpha(O)=3.48\times10^{-5}\ 5;$ $\alpha(P)=4\ 26\times10^{-6}\ 7$
377.6 5	4.2	1064.8	15/2-	687.2	$11/2^{+}$	M2		0.878	7.8	$\alpha(K) = 0.668 \ 10; \ \alpha(L) = 0.1584 \ 24; \ \alpha(M) = 0.0390 \ 6$ $\alpha(N) = 0.01011 \ 15; \ \alpha(Q) = 0.00210 \ 3; \ \alpha(P) = 0.000265 \ 4$
687.1 5	7.4	687.2	11/2+	0.0	9/2+	M1+E2	-0.20 2	0.0536 9	7.8	$\alpha(K)=0.01017 15, \alpha(O)=0.00210 5, \alpha(1)=0.000205 7$ $\alpha(K)=0.0438 7; \alpha(L)=0.00752 12; \alpha(M)=0.00177 3$ $\alpha(N)=0.000455 7; \alpha(O)=9.52\times10^{-5} 15;$ $\alpha(P)=1.231\times10^{-5} 19$
1064.9 5	90.8	1064.8	15/2-	0.0	9/2+	E3		0.01499	92.2	$\alpha(K)=0.01105 \ 16; \ \alpha(L)=0.00297 \ 5; \ \alpha(M)=0.000736 \ 11$ $\alpha(N)=0.000190 \ 3; \ \alpha(O)=3.86\times10^{-5} \ 6;$ $\alpha(P)=4.55\times10^{-6} \ 7$

[†] Additional information 1. [‡] From Adopted Gammas. [#] $I(\gamma+ce)/(1+\alpha)$. [@] from decay scheme. $I(\gamma+ce)(687\gamma)=I(\gamma+ce)(377\gamma)$. $I\gamma(1064\gamma)/I\gamma(377\gamma) = 100 \ 3/4.6 \ 3$ from 1998Mc03. [&] For absolute intensity per 100 decays, multiply by 0.00016 4.

 \mathbf{b}

²¹¹₈₄Po₁₂₇