$^{211} {\rm Pb}\,\beta^-$ decay

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	E. A. Mccutchan, C. M. Baglin, O. Gorbachenko, N. Todorovic	NDS 114, 661 (2013)	28-Feb-2013

Parent: ²¹¹Pb: E=0.0; $J^{\pi}=9/2^+$; $T_{1/2}=36.1 \text{ min } 2$; $Q(\beta^-)=1367 \ 6$; $\%\beta^-$ decay=100.0 ²¹¹Pb- $\%\beta^-$ decay: 100%.

²¹¹Bi Levels

The decay scheme is that proposed by 1965Me07 with modifications from 1967Da10, 1968Ha21, and 1971Da34.

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} ‡	Comments
0.0 404.866 <i>9</i>	9/2 ⁻ 7/2 ⁻	2.14 min 2 0.317 ns <i>12</i>	g=1.27 20 J^{π} : $\gamma\gamma(\theta)$, $\gamma\gamma(\text{pol})$ establish J=7/2 (1968Da07,1968Go15). $T_{1/2}$: weighted average of 0.318 ns <i>14</i> ($\gamma\gamma(t)$ 1966Go19) and 0.315 ns 20 ($\beta\gamma(t)$ 1963Va05). g: from $\gamma\gamma(\theta)$ b) (liquid source H=18.3 kG and $T_{1/2}=0.317$ ns <i>11</i> 1965A g03)
766.539 <i>16</i> 831.960 <i>12</i>	(9/2,11/2) ⁻ 9/2 ⁻	<90 ps	J^{π} : $\gamma\gamma(\theta)$ establishes J=9/2. T _{1/2} : from $\beta\gamma(t)$ (1963Va05).
951? 1014.40 <i>4</i> 1080.15 <i>5</i> 1103.5 <i>2</i>	7/2 ⁻ ,9/2 ⁻ ,11/2 ⁻		
1109.485 23 1196.33 5 1234.3 4 1270.72 6	9/2-(7/2,9/2,11/2)		

[†] From least-squares fit to $E\gamma$, excluding the 677 γ which fits its placement poorly; this results in a reduced χ^2 of 4.2 compared with a critical value of 2.25 and a value of 25.9 when all $E\gamma$ data are included.

[‡] From Adopted Levels.

β^{-} radiations

E(level)	$I\beta^{-\dagger\ddagger}$	Log ft	Comments
1270.72	0.0186 11	5.91 9	av E β =25.3 17
1234.3	0.0013 <i>3</i>	7.49 12	av $E\beta = 35.3 \ 17$
1196.33	0.017 3	6.71 9	av E β =45.9 18
1109.485	0.83 4	5.58 4	av E β =71.3 18
1103.5	0.0046 7	7.87 8	av Eβ=73.1 18
1080.15	0.056 6	6.90 6	av E β =80.2 19
951?	0.022 13	7.8 <i>3</i>	av Eβ=120.7 20
831.960	6.28 10	5.7330 18	av $E\beta = 160.2 \ 21$
			E(decay), $I\beta^-$: E β =525 25, $I\beta$ =5.5 8 from F-K analysis of β (830 γ) (1963Va05).
404.866	1.63 9	7.19 <i>3</i>	av Eβ=313.7 23
			E(decay), $I\beta^-$: E β =951 25, $I\beta$ =1.4 5 from F-K analysis of β (404 γ +427 γ)
0.0	91.32 12	5.990 8	(19BB¥4073)3 24
			E(decay): Eβ=1378 8, from F-K analysis (1965Co06). Other: 1355 25 (1963Va05).
			$I\beta^-$: from I(γ +ce) imbalance at ²¹¹ Bi g.s. Others (from F-K analysis): 93 2 (1965Co06), 92.4 <i>15</i> (1963Va05).
	E(level) 1270.72 1234.3 1196.33 1109.485 1103.5 1080.15 951? 831.960 404.866 0.0	$\begin{array}{c c} \underline{\mathrm{E}}(\mathrm{level}) & \underline{\mathrm{I}}\beta^{-\dagger \ddagger} \\ \hline 1270.72 & 0.0186 \ 11 \\ 1234.3 & 0.0013 \ 3 \\ 1196.33 & 0.017 \ 3 \\ 1109.485 & 0.83 \ 4 \\ 1103.5 & 0.0046 \ 7 \\ 1080.15 & 0.056 \ 6 \\ 951? & 0.022 \ 13 \\ 831.960 & 6.28 \ 10 \\ 404.866 & 1.63 \ 9 \\ 0.0 & 91.32 \ 12 \\ \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Continued on next page (footnotes at end of table)

$^{211} {\rm Pb}\,\beta^-$ decay (continued)

β^- radiations (continued)

[†] Calculated from I(γ+ce) imbalance at each level.
[‡] Absolute intensity per 100 decays.
[#] Existence of this branch is questionable.

 $\gamma(^{211}{
m Bi})$

Iy normalization: from $(0.99724 \ 4) \times (0.1295 \ 11) = 0.1291 \ 11$; where ²¹¹Bi α decay branching=99.724% 4 and I(351.06 γ , ²⁰⁷Tl)=12.95% 11 of ²¹¹Bi α decay. All $I_{\gamma}(^{211}Pb)$ have been measured relative to I(351.06 γ in ^{207}Tl)=100 in sources where ^{211}Pb is in equilibrium with its daughter, ^{211}Bi . Others: 1967CaZY, 1962Gi03. All ce intensities have been measured relative to I(ce(K) 351.06 γ). The evaluator has renormalized all Ice to give α (K)(351.06 γ , ²⁰⁷Tl)=0.199. The α (exp) quoted are the weighted averages of all measured and renormalized Ice divided by adopted I γ . The data presented include information from the following references: $E\gamma$, $I\gamma$: 1988Hi14, 1976Bl13, 1971Da34, 1968Br17, 1968Go15, 1968Ha21, 1967Da10, 1967Da20, 1965Me07 α: 1971Ra30, 1968Go15, 1965Br35, 1965Co06, 1965Me07, 1963Va05, 1938Ch04 γγ, sum γγ: 1971Da34, 1968Go15, 1968Ha21, 1967Da10, 1965Me07, 1963Va 05 $\gamma\gamma(\theta), \gamma\gamma(\theta, \text{pol}):$ 1968Da07, 1968Go15, 1965Ag03, 1965Co06, 19 1964Uh01, 1963Va05 $\gamma\gamma$ (t): 1966Go19 1967Sc39, 1965Co06, 1963Va05 β^- : 1967Sc39 $\beta\gamma$: $\beta \gamma(t)$: 1963Va05 $\beta\gamma(\theta)$: 1971Ra30 $K\alpha_1$ x ray(T1)/K α_1 x ray(Bi)=3.12 4 (1971Da34). $K\alpha_1$ x ray(T1)/I(65.420 γ)=15.5 2 (1971Da34). $I(65.402\gamma)/x-ray(T1)=0.029$ 10 (1965Me07). Ev $I_{\nu}^{\ddagger b}$ $\alpha^{\boldsymbol{c}}$ E_i (level) Ef J^{π} Mult. Comments 0.60[@] 4 65.420 14 $9/2^{-}$ 831.960 766.539 (9/2,11/2)-M1 6.58 $\alpha(L)=5.02$ 7; $\alpha(M)=1.182$ 17; $\alpha(N+...)=0.372$ 6 $\alpha(N)=0.302$ 5; $\alpha(O)=0.0618$ 9; $\alpha(P)=0.00735$ 11 Mult.: from L1/L2=6.8 (1965Br35), 10 (1938Ch04); α (L)exp=7.2 (Ice(L)(1938Ch04)/I γ). (theory: L1/L2=9.39 20). x81.0[@] 2 0.35[@] 9 ^x83.8[@] 1 $0.45^{\textcircled{0}}$ 7 x88.2[@] 2 $0.13^{\textcircled{0}}{3}$ x94.3[@] 3 $0.09^{@}$ 2 95.0[@] 2 $0.14^{@}$ 2 1109.485 $9/2^{-}$ 1014.40 7/2-,9/2-,11/2-M1+E21.6 + 5 - 39.4 4 $\alpha(K)=3.0.9; \alpha(L)=4.8.5; \alpha(M)=1.25.12; \alpha(N+..)=0.38.4$ $\alpha(N)=0.32$ 3; $\alpha(O)=0.059$ 6; $\alpha(P)=0.0048$ 4 Mult., δ : from α (K)exp=2.8 9 (K x ray/ γ in $\gamma\gamma$, 1965Me07). x97.3[@] 2 $0.09^{\textcircled{0}}$ 1 x244^a 0.3^{*a*} 1 $0.24^{\textcircled{0}}{3}$ 1080.15 313.59 9 766.539 (9/2,11/2)-

 ω

²¹¹ Pb β^- decay (continued)									
γ ⁽²¹¹ Bi) (continued)									
${\rm E_{\gamma}}^{\dagger}$	I_{γ} [‡] <i>b</i>	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	J_f^π	Mult.	$\delta^{\#}$	α^{C}	Comments
342.91 4	0.27 [@] 4	1109.485	9/2-	766.539	(9/2,11/2)-	[M1,E2]		0.20 12	α (K)=0.16 <i>11</i> ; α (L)=0.035 <i>11</i> ; α (M)=0.0085 22; α (N+)=0.0027 7 α (N)=0.0022 6; α (O)=0.00043 <i>13</i> ; α (P)=4.7×10 ⁻⁵ 20
362.072 ^d 17	0.33 2	766.539	(9/2,11/2)-	404.866	7/2-				E _{γ} : a 361-keV γ was deduced from $\gamma\gamma$ data (1968Ha21).
404.853 10	29.3 4	404.866	7/2-	0.0	9/2-	M1+E2	-1.1 <i>I</i>	0.122 8	α(K)=0.095 7; α(L)=0.0206 8; α(M)=0.00498 17; α(N+)=0.00156 6 α(N)=0.00127 5; α(O)=0.000254 10; α(P)=2.79×10-5 13 Mult.: from ce data. α(K)exp=0.099 5 (average of renormalized measurements of 1971Ra30,1968Go15,1965Co06,1965Me07,1963Va05) ; L1/L2=2.1 (1965Br35); K/L=4 1 (1965Co06) (theory: L1/L2=3.12 27,K/L=4.6 4). δ: from -1.15 (γγ(θ,pol) 1968Go15) and 0.98 +8-7 (from α(K)exp).
427.088 10	13.6 3	831.960	9/2-	404.866	7/2-	M1+E2	-0.022 9	0.1784	α(K)=0.1457 21; α(L)=0.0250 4; α(M)=0.00586 9; α(N+)=0.00184 3 α(N)=0.001497 21; α(O)=0.000306 5; α(P)=3.65×10-5 6 Mult.: from α(K)exp=0.143 17 (weighted average of renormalized values of 1968Go15,1965Co06,1965Me07,1963Va05); K/L=7 2 (1965Co06); L1/L2=5.0 (1965Br35). (theory: K/L=5.84 12, L1/L2=9.78 23). δ: from γγ(θ): 9/2(427γ)7/2(405γ)9/2 cascade with δ(405γ)=-1.1 1 and A2=-0.094 6 (weighted average of measurements by 1968Da07,1968Go15,1965Co06,1964Uh01,1963Va05) . Other: 0.17 15 γγ(θ,pol) (1968Go15).
430 [@] 1 x478.0 [@] 4 x479.62 ^{&} 20 x481.1 [@] 4 x481.92 ^{&} 12 x491.82 ^{&} 12 x494.2 ^{&} 3 x500.4 [@] 5 x502.0 ^{&} 2	$\begin{array}{c} 0.05 @ 2 \\ 0.10 @ 2 \\ 0.04 \& 1 \\ 0.20 @ 4 \\ 0.08 \& 1 \\ 0.032 \& 6 \\ 0.013 \& 5 \\ 0.09 @ 2 \\ 0.028 \& 6 \end{array}$	1196.33		766.539	(9/2,11/2) ⁻				

4

L

²¹¹ Pb β^- decay (continued)									
γ ⁽²¹¹ Bi) (continued)									
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\ddagger b}$	E _i (level)	J^{π}_i	E_f	J_f^π	Mult.	$\delta^{\#}$	α^{c}	Comments
504.12 ^{&} 12 546 ^d	0.045 ^{&} 6	1270.72 951?	(7/2,9/2,11/2)	766.539 404.866	(9/2,11/2) ⁻ 7/2 ⁻				E_{γ} : γ not observed; existence deduced from $\gamma\gamma$ data (1968Ha21)
609.38 <i>4</i> 676.69 <i>7</i>	0.33 5 0.10 <i>3</i>	1014.40 1080.15	7/2 ⁻ ,9/2 ⁻ ,11/2 ⁻	404.866 404.866	7/2 ⁻ 7/2 ⁻				E_{γ} : fits poorly; E_{γ} excluded from
704.64 <i>3</i>	3.58 8	1109.485	9/2-	404.866	7/2-	M1+E2	-0.022 7	0.0476	α(K) = 0.0390 6; α(L) = 0.00657 10; α(M) = 0.001540 22; α(N+) = 0.000484 7 α(N) = 0.00394 6; α(O) = 8.05 × 10-5 12; α(P) = 9.61 × 10-6 14 Mult.: from α(K)exp=0.036 5 (weighted average of renormalized values of 1968Go15 and 1963Va05); γγ(θ). δ: from γγ(θ): 9/2(705γ)7/2(405γ)9/2 cascade with δ(405γ) = -1.1 1 and A2 = -0.094 4 (weighted average of measurements by 1968Da07, 1968Go15, 1965Aag03, 1965Co06, 1962Va05); δ= 0.4 + 2 4 from α(K) are α(K) = 0.04 + 0 4 from α(K) are α(K) = 0.04 + 0 4 from α(K) are α(K) = 0.04 + 0 4 from α(K) are α(K) = 0.04 + 0 4 from α(K) are α(K) = 0.04 + 0 4 from α(K) are α(K) = 0.04 + 0 4 from α(K) are α(K) = 0.04 + 0 4 from α(K) are α(K) = 0.04 + 0 4 from α(K) are α(K) = 0.04 + 0 4 from α(K) are
766.51 <i>3</i>	4.78 12	766.539	(9/2,11/2) ⁻	0.0	9/2-	M1		0.0382	$\alpha(K) = 0.0313 \ 5; \ \alpha(L) = 0.00527 \ 8;$ $\alpha(M) = 0.001234 \ 18; \ \alpha(N+) = 0.000388 \ 6$ $\alpha(N) = 0.000316 \ 5; \ \alpha(O) = 6.45 \times 10^{-5} \ 9;$ $\alpha(P) = 7.71 \times 10^{-6} \ 11$ Mult.: from $\alpha(K) \exp = 0.041 \ 5$ (weighted average of renormalized values of 1968Co15 and 1965Me07)
832.01 <i>3</i>	27.3 4	831.960	9/2-	0.0	9/2-	M1+E2	0.39 +18-25	0.0281 24	$\alpha(K)=0.0230\ 20;\ \alpha(L)=0.0039\ 3;$ $\alpha(M)=0.00092\ 7;\ \alpha(N+)=0.000288\ 22$ $\alpha(N)=0.000235\ 18;\ \alpha(O)=4.8\times10^{-5}\ 4;$ $\alpha(P)=5.7\times10^{-6}\ 5$ Mult., δ : from $\alpha(K)\exp=0.023\ 2$ (weighted average of renormalized values of 1968Go15\ 1965Me07\ 1963Va05)
865.93 14	0.046 3	1270.72	(7/2,9/2,11/2)	404.866	7/2-				
951 ^d	0.17 10	951?		0.0	9/2-				E_{γ} , I_{γ} : from 1968Ha21, not observed by other investigators
$1014.64 5 \\ 1080.16 6 \\ x1090.5^{@} 5$	$0.134 \ 4 \\ 0.095 \ 5 \\ 0.020^{@} \ 5$	1014.40 1080.15	7/2 ⁻ ,9/2 ⁻ ,11/2 ⁻	0.0 0.0	9/2 ⁻ 9/2 ⁻				oner nivesugators.
1103.52 ^{&} 20 1109.48 5 1196.33 5	0.036 <i>5</i> 0.89 <i>3</i> 0.079 <i>3</i>	1103.5 1109.485 1196.33	9/2-	$0.0 \\ 0.0 \\ 0.0$	9/2 ⁻ 9/2 ⁻ 9/2 ⁻				

S

L

²¹¹Pb β^- decay (continued)

$\gamma(^{211}\text{Bi})$ (continued)

E_{γ}^{\dagger}	I_{γ} [‡] <i>b</i>	E _i (level)	\mathbf{J}_i^π	$\mathbf{E}_f \mathbf{J}_f^{\pi}$
1234.3 [@] 4 1270.71 8	$0.010^{@} 2$ 0.053 4	1234.3 1270.72	(7/2,9/2,11/2)	$\begin{array}{c} 0.0 & 9/2^- \\ 0.0 & 9/2^- \end{array}$

[†] From 1976B113, unless otherwise noted. The energies quoted by 1976B113 have been adjusted by the evaluator for a change in calibration energies (compare 1979He19). The change is +10 eV for 300 $\langle E\gamma \langle 500 \text{ keV} \rangle$ and +50 eV for $E\gamma \rangle 600 \text{ keV}$.

[‡] Weighted average of measurements by 1988Hi14, 1976Bl13, 1971Da34, 1968Br17, 1968Go15, 1968Ha21, 1967Da10, 1967Da20, and 1965Me07, unless otherwise noted.

[#] If δ is given without a sign, then the sign of δ is not known.

[@] From 1971Da34. [&] From 1988Hi14.

^{*a*} From 1968Ha21.

^b For absolute intensity per 100 decays, multiply by 0.1291 11.

^c Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^d Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

211 Pb β^- decay

