²⁰⁹Bi(α,2nγ) 1970Be37,1970Be53,1985Ka07

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	B. Singh, S. Singh, H. X. Nguyen and M. Patial	NDS 114, 661 (2013)	28-Feb-2013

1970Be37, 1970Be53: E=26-43 MeV. Measured E γ , I γ , $\gamma\gamma$, $\gamma(\theta)$, $\gamma(t)$, ce. See also 1972As04 for uncertainties of level half-lives. 1985Ka07: E=32.9 MeV. Measured γ , ce.

Others:

1971Ma36: E=34 MeV. Measured E γ , I γ , excitation functions for delayed and prompt γ rays.

1975In01: E=30, 33 MeV. Measured $\gamma(\theta,H,t)$, deduced g factors.

1975ReZU: E=51 MeV.

1983Ma08: E=45,60 MeV. Measured Q.

1985Be22: E=35 MeV. Measured g factors.

1991Sc15 (also 1990Ha30): E=35 MeV. Measured Q.

Additional information 1.

²¹¹At Levels

The level scheme is that proposed by 1970Be37 and 1970Be53 with additions by 1985Ka07. The proposed levels are based on E_γ, I_γ, $\gamma\gamma$, $\gamma\gamma(\theta)$, $\gamma\gamma(t)$ measurements (1970Be37,1970Be53); and prompt and delayed I_γ, Ice and $\alpha\gamma(t)$ measurements (1985Ka07). For the description of these levels, the authors rely heavily on shell-model calculations. The lower levels belong primarily to the configuration $\pi h_{9/2}^3$, $\pi h_{9/2}^2 \otimes \pi f_{1/2}^1$ or $\pi h_{9/2}^2 \otimes \pi i_{13/2}^1$; the higher levels include core excitation.

The g-factor measurements have been corrected by the authors for diamagnetic shielding and Knight shift.

E(level)	$J^{\pi \dagger}$	T _{1/2}	Comments
0.0 674.0 866.0 947.3 1066.9 1116.0 1123.2	9/2 ⁻ (7/2) ⁻ (7/2) ⁻ (5/2) ⁻ (13/2) ⁻ (3/2) ⁻ (11/2) ⁻		Configuration= $\pi h_{9/2}^3$ (1970Be37).
1270.3	$(15/2)^{-}$	13.0 ns 15	$T_{1/2}$: from $\alpha\gamma(t)$ (1970Be37); uncertainty from 1972As04.
1320.3 1355.0	$(17/2)^{-}$ $(13/2)^{+}$		Configuration= $\pi h_{9/2}^3$ (1970Be37).
1416.3	$(13/2)^{-}$ $(21/2)^{-}$	50 ns 5	g=+0.917 16
			Configuration= $\pi h_{0/2}^3$ (1970Be37,1975In01,1983Ma08).
			T _{1/2} : from $\alpha\gamma(t)$ (1970Be37); uncertainty from 1972As04. g: from 1975In01.
1927.9 [‡]	$(23/2)^{-}$		Configuration= $\pi h_{9/2}^2 \otimes \pi f_{7/2}$ (1970Be53).
2616.8‡	$(25/2^+)$		Configuration= $\pi h_{9/2}^{2/2} \otimes \pi i_{13/2}^1$ (1970Be53).
2641.2 [‡]	$(29/2)^+$	70 ns 5	$g=+1.073 \ 31; \ Q=1.01 \ 19$
			Configuration= $\pi h_{9/2}^2 _{8+} \otimes \pi i_{13/2}^1$ (1970Be53,1975In01, 1983Ma08). T _{1/2} : from (α)(688.9 γ ,713.3 γ)(t) (1970Be53).
			g: from $(511.6\gamma)(\theta,H,t)$ (1975In01). Others: 1.04 2 from $(713.3\gamma)(\theta,H,t)$ (1975ReZU), 1.056 7 (1976Ha62).
п			Q: from $\gamma(\theta, H, t)$ (1983Ma08).
4177.4 [#]	(31/2+)	<1.3 ns	Configuration= $\pi h_{9/2}^3 2_{1/2} \approx \nu [g_{9/2}^1 p_{1/2}^{-1}]_{5-}$ (1985Be22). T _{1/2} : from (1536.0 γ)(t) (1985Ka07).
4381.1 [#]	(33/2 ⁺)		Configuration= $\pi [h_{9/2}^2 f_{7/2}^1]_{23/2-\otimes \nu} [p_{7/2}^{-1} g_{9/2}^4]_{5-} + \text{small admixture of configuration} = \pi h_{3-2}^{2} \frac{1}{2} \frac{1}{2}$
4816.2 [#]	(39/2-)	4.23 μs 7	g=0.690 7; $Q=1.91$ 25 g: from (435.1 ν)(θ ,H,t) (1985Be22).
			Q: from LEMS method (1991Sc15).

Continued on next page (footnotes at end of table)

From ENSDF

			2	⁰⁹ Bi(α,2n	ιγ) 197	0Be37,1970	Be53,19	85Ka07 ((continued)	
²¹¹ At Levels (continued)										
E(level)	J ^π † Τ	1/2					Com	iments		
$T_{1/2}: \text{ from Adopted Levels.} \\Configuration=\pi[h_{9/2}^2 i_{1/2}^1]_{29/2+} \otimes \nu[p_{1/2}^{-1}g_{9/2}^1]_{5-} + \text{ small admixture of configuration} \\\pi[h_{9/2}^2 f_{7/2}^1]_{23/2-} \otimes \nu[j_{15/2}^{-1}p_{1/2}^{-1})]_{8+} (1985Be22).$										
 [†] From Adopted Levels. [‡] Level from 1970Be53. [#] Level from 1985Ka07. 										
						$\gamma(^{211})$	At)			
	 Pr Εγ	ompt inte	-							
	96 204 253 435 511 689 714 1067 1536		$\begin{array}{cccc} 5.0 & 10 \\ 1.1 & 3 \\ 6.5 & 2 \\ 1.0 \\ 5.3 & 6 \\ 3.5 & 10 \\ 3.5 & 10 \\ 7.6 & 6 \\ 1.2 & 2 \end{array}$							
${\rm E_{\gamma}}^{\ddagger}$	 Ι _γ	E _i (level)	J_i^{π}	Е _{<i>f</i>}	J_f^{π}	Mult.	δ	α^{\dagger}	Comments	
96.0	≈3.9 [#]	1416.3	(21/2)-	1320.3	(17/2)-	(E2)		9.17	α (L)=6.75; α (M)=1.805; α (N+)=0.620 I_{γ} : I γ from α and I(γ +ce) \approx 40 (1970Be37). Mult.: $\alpha\gamma(\theta)$ suggests a stretched E2 transition (1970Be37). α : α excludes α (K). K-shell binding energy=95 73 keV	
147.1	2.7#	1270.3	(15/2)-	1123.2	(11/2)-	(E2)		1.567	$\alpha(K)=0.300 \ 5; \ \alpha(L)=0.937 \ 14; \\ \alpha(M)=0.251 \ 4 \\ \alpha(N)=0.0648 \ 9; \ \alpha(O)=0.01275 \ 18; \\ \alpha(P)=0.001310 \ 19 \\ Mult.: D or E2 \ from RUL; (E2) \ from \ \Delta J^{\pi}.$	
168.9	≈0.2 [#]	1116.0	(3/2)-	947.3	(5/2)-					
191.8 203.4	0.3 [#] ≤5.7 [#]	866.0 1270.3	(7/2) ⁻ (15/2) ⁻	674.0 1066.9	(7/2) ⁻ (13/2) ⁻	(M1,E2)		1.0 6	$\alpha(K)=0.7 \ 6; \ \alpha(L)=0.231 \ 5; \ \alpha(M)=0.058 \ 3$ $\alpha(N)=0.0150 \ 8; \ \alpha(O)=0.00308 \ 5; \ \alpha(P)=0.00037 \ 5$ $I_{\gamma}: I_{\gamma} may include I(203.7\gamma) from the 4381.1 level.$ Mult.: D or E2 from RUL; M1, E2 from ΛI^{π}	
203.7 &	14 ^{&} 1	4381.1	(33/2+)	4177.4	(31/2+)	M1+E2	0.8 4	1.2 3	$\alpha(K)=0.9 \ 3; \ \alpha(L)=0.230 \ 4; \ \alpha(M)=0.0570 \ 16 \ \alpha(N)=0.0148 \ 4; \ \alpha(O)=0.00306 \ 5; \ \alpha(P)=0.000384 \ 25 \ Mult., \delta: \ \alpha(exp)=1.6 \ 3 \ from \ relative$	

Continued on next page (footnotes at end of table)

²⁰⁹Bi(α,2nγ) 1970Be37,1970Be53,1985Ka07 (continued)

γ ⁽²¹¹At) (continued)</sup>

I_{γ}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.	α^{\dagger}	Comments
							cascading intensities, α (L)exp=0.20 <i>3</i> , L/M=4.3 <i>9</i> . (α (L)exp measured relative to α (K)(1066.9 γ) for E2 transition, 1985Ka07).
0.9 [#]	1355.0 1116.0	$(13/2)^+$ $(3/2)^-$	1123.2 866.0	$(11/2)^{-}$ $(7/2)^{-}$			
60 [#]	1320.3	$(17/2)^{-}$	1066.9	$(1)^{(1)}(13/2)^{-}$	(E2)	0.223	$\alpha(K)=0.0988 \ 14; \ \alpha(L)=0.0921 \ 13;$
							$\alpha(M)=0.0243 \ 4$ $\alpha(N)=0.00627 \ 9; \ \alpha(O)=0.001250 \ 18;$
							α (P)=0.0001350 <i>19</i> Mult.: $\alpha\gamma(\theta)$ suggests a stretched E2 transition
o. 5#	1255.0	(12/2)+	1066.0	(12/2)=			(1970Be37).
2.5" 35 <mark>&</mark> 2	1355.0	$(13/2)^{-}$	1066.9	(13/2) $(33/2^+)$	E3	0 184	$\alpha(\mathbf{K}) = 0.0780$ 11: $\alpha(\mathbf{I}) = 0.0787$ 11:
35 2	4010.2	(39/2)	4301.1	(33/2)	ЕJ	0.164	$\alpha(\mathbf{K}) = 0.0780 11, \alpha(\mathbf{L}) = 0.0787 11, \alpha(\mathbf{M}) = 0.0210 3$
							α (N)=0.00547 8; α (O)=0.001103 16; α (P)=0.0001236 18
							Mult.: from $\alpha(K)$ exp=0.083 8, K/L=1.06 11 (1985Ka07). ($\alpha(K)$ exp measured relative to $\alpha(K)$ (1066 9 α) E2 transition.).
1.1 [#]	1116.0	$(3/2)^{-}$	674.0	$(7/2)^{-}$			
30 [@] 2	1927.9	(23/2)-	1416.3	(21/2)-	(D)		I_{γ} : prompt I_{γ} ≈30 (1970Be37). Mult.: from $\gamma(\theta)$ (1970Be53).
12.5#	674.0	$(7/2)^{-}$	0.0	9/2-			
22 [@] 2	2616.8	$(25/2^+)$	1927.9	$(23/2)^{-}$			I_{γ} : prompt $I_{\gamma}=16$ (1970Be53).
9 [@] 1	2641.2	(29/2)+	1927.9	(23/2)-	E3	0.0418	$\alpha(K)=0.0265 4; \alpha(L)=0.01142 16;$ $\alpha(M)=0.00294 5$ $\alpha(N)=0.000763 11; \alpha(O)=0.0001567 22;$ $\alpha(D)=1.90\times10^{-5} 2$
							$\alpha(P) = 1.89 \times 10^{-5} 3$ I _y : prompt I _y =3.4 (1970Be53).
							Mult.: from $\alpha(K)\exp=0.052$ 6 mult=E3 or M1+E2; from K/L=2.5 4 mult.=E3 or M4. ($\alpha(K)\exp$ measured relative to $\alpha(K)(1066.9\gamma)$ E2 transition, 1985Ka07).
3.9 [#]	866.0	$(7/2)^{-}$	0.0	9/2-			
4.0 [#]	947.3	$(5/2)^{-}$	0.0	9/2-			
100 [#]	1066.9	(13/2)-	0.0	9/2-	(E2)	0.00683	$\alpha(\mathbf{K})=0.00540 \ 8; \ \alpha(\mathbf{L})=0.001086 \ 16; \\ \alpha(\mathbf{M})=0.000261 \ 4 \\ \alpha(\mathbf{N})=6.75\times10^{-5} \ 10; \ \alpha(\mathbf{O})=1.423\times10^{-5} \ 20; \\ (100)$
							$\alpha(P)=1.88\times10^{-6}3$ Mult.: $\alpha\gamma(\theta)$ suggests a stretched E2 transition (1970Be37)
14 [#]	1123.2	$(11/2)^{-}$	0.0	9/2-			(1) (0)(0)()).
4.6 [#]	1355.0	$(13/2)^+$	0.0	9/2-			
37 ^{&} 4	4177.4	(31/2 ⁺)	2641.2	(29/2)+	(M1)	0.00757	α (K)=0.00609 9; α (L)=0.001030 15; α (M)=0.000242 4
							$\alpha(N)=6.27\times10^{-5}$ 9; $\alpha(O)=1.344\times10^{-5}$ 19; $\alpha(D)=1.87\times10^{-6}$ 2; $\alpha(DE)=0.0001265$ 20
							Mult: $\alpha(K)$ exp=0.0063 7 (1985Ka07) indicates M1 or E3; M1 from RUL.
	$ I_{\gamma} 0.9^{\#} 60^{\#} 2.5^{\#} 35^{\&} 2 1.1^{\#} 30^{@} 2 12.5^{\#} 22^{@} 2 9^{@} 1 3.9^{\#} 4.0^{\#} 100^{\#} 14^{\#} 4.6^{\#} 37^{\&} 4 $	I_{γ} $E_i(\text{level})$ $0.9^{\#}$ 1355.0 $60^{\#}$ 1320.3 $2.5^{\#}$ 1355.0 $35^{\&}$ 2 $35^{\&}$ 2 4816.2 1116.0 $30^{@}$ 2 $12.5^{\#}$ 674.0 $22^{@}$ 2 2641.2 $3.9^{\#}$ 866.0 $9^{@}$ 1 2641.2 $3.9^{\#}$ 866.0 $9^{@}$ 1 2641.2 $3.9^{\#}$ 866.0 $9^{@}$ 1 $3.9^{\#}$ 4.0^{\#} $3.7^{\&}$ 4 4177.4	I_{γ} $E_i(\text{level})$ J_i^{π} 0.9 [#] 1355.0 $(13/2)^+$ 60 [#] 1320.3 $(17/2)^-$ 2.5 [#] 1355.0 $(13/2)^+$ 35 ^{&} 2 4816.2 $(39/2^-)$ 1.1 [#] 1116.0 $(3/2)^-$ 30 [@] 2 1927.9 $(23/2)^-$ 12.5 [#] 674.0 $(7/2)^-$ 22 [@] 2 2616.8 $(25/2^+)$ 9 [@] 1 2641.2 $(29/2)^+$ 3.9 [#] 4 866.0 $(7/2)^-$ 100 [#] 1066.9 $(13/2)^-$ 14 [#] 1123.2 $(11/2)^-$ 37 ^{&} 4 4177.4 $(31/2^+)$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

 $^{209}{\rm Bi}(\alpha,\!2{\rm n}\gamma)$ 1970Be37,1970Be53,1985Ka07 (continued)

$\gamma(^{211}\text{At})$ (continued)

[†] Additional information 2.
[‡] From 1970Be37, unless otherwise noted.
[#] From prompt spectrum (1970Be37).

- ^(a) From 1970Be53. Intensity from delayed γ spectrum, normalized to $I\gamma(511.6\gamma)=30$. & From 1985Ka07. Intensity from delayed γ spectrum, normalized to $I\gamma(713.6\gamma)=9$.
- ^{*a*} Placement of transition in the level scheme is uncertain.

 $^{211}_{85}{\rm At}_{126}$